Abstract

In order to evaluate methods of enhancing the response of state-of-the-art photocathodes, such as the S-20, we have used a mathematical absorption–diffusion model to study the effects of skewed incidence of light on the quantum efficiency. The phenomenon of increased optical absorption due to multiple reflections of light within the emitting layer–glass substrate combination is treated as a function of the angle of incidence. When the quantum efficiency generated for skewed incidence is compared with the quantum yield generated for normal incidence, a gain of 3.5 is predicted. The gain is greatest for the smallest absorption coefficient–photocathode thickness product.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. John Sizelove, J. Love, IEEE Trans. ED-13, 98 (1966).
  2. K. Deutscher, Z. Physik 151, 536 (1958).
    [CrossRef]
  3. Bilyie E. Rambo, “Improved Long Wavelength Response of Photoemissive Surfaces”. Technical Documentary Report Nr. AL-TDR-64-19, prepared for the Air Force Avionics Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson AFB, Ohio.
  4. John Sizelove, J. Love, Appl. Opt. 5, 1419 (1966).
    [CrossRef] [PubMed]
  5. John L. Gumnick, “Improved Quantum Efficiency Laser Detectors”. Technical Report AFAL-TR-65-190 (July1965), prepared by ITT Industrial Laboratories, Indiana, for the Air Force Avionics Laboratory, Wright-Patterson AFB, Ohio.
  6. W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
    [CrossRef]
  7. F. A. Jenkins, H. White, Fundamentals of Optics (McGraw–Hill Book Co., Inc., New York, 1957), 3rd ed.
  8. W. O. Gunter, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
    [CrossRef]
  9. K. R. Crowe, J. L. Gumnick, D. A. Wilcox, “Improved Quantum Efficiency Laser Detectors”, Tech. Rept. AFAL-TR-66–199, prepared by ITT Industrial Laboratories, Indiana, for the Air Force Avionics LaboratoryWright-Patterson AFB, Ohio.

1966

John Sizelove, J. Love, IEEE Trans. ED-13, 98 (1966).

John Sizelove, J. Love, Appl. Opt. 5, 1419 (1966).
[CrossRef] [PubMed]

1965

1963

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
[CrossRef]

1958

K. Deutscher, Z. Physik 151, 536 (1958).
[CrossRef]

Crowe, K. R.

K. R. Crowe, J. L. Gumnick, D. A. Wilcox, “Improved Quantum Efficiency Laser Detectors”, Tech. Rept. AFAL-TR-66–199, prepared by ITT Industrial Laboratories, Indiana, for the Air Force Avionics LaboratoryWright-Patterson AFB, Ohio.

Deutscher, K.

K. Deutscher, Z. Physik 151, 536 (1958).
[CrossRef]

Erickson, E. F.

Grant, G. R.

Gumnick, J. L.

K. R. Crowe, J. L. Gumnick, D. A. Wilcox, “Improved Quantum Efficiency Laser Detectors”, Tech. Rept. AFAL-TR-66–199, prepared by ITT Industrial Laboratories, Indiana, for the Air Force Avionics LaboratoryWright-Patterson AFB, Ohio.

Gumnick, John L.

John L. Gumnick, “Improved Quantum Efficiency Laser Detectors”. Technical Report AFAL-TR-65-190 (July1965), prepared by ITT Industrial Laboratories, Indiana, for the Air Force Avionics Laboratory, Wright-Patterson AFB, Ohio.

Gunter, W. O.

Jenkins, F. A.

F. A. Jenkins, H. White, Fundamentals of Optics (McGraw–Hill Book Co., Inc., New York, 1957), 3rd ed.

Love, J.

John Sizelove, J. Love, IEEE Trans. ED-13, 98 (1966).

John Sizelove, J. Love, Appl. Opt. 5, 1419 (1966).
[CrossRef] [PubMed]

Rambo, Bilyie E.

Bilyie E. Rambo, “Improved Long Wavelength Response of Photoemissive Surfaces”. Technical Documentary Report Nr. AL-TDR-64-19, prepared for the Air Force Avionics Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson AFB, Ohio.

Sizelove, John

John Sizelove, J. Love, IEEE Trans. ED-13, 98 (1966).

John Sizelove, J. Love, Appl. Opt. 5, 1419 (1966).
[CrossRef] [PubMed]

Spicer, W. E.

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
[CrossRef]

White, H.

F. A. Jenkins, H. White, Fundamentals of Optics (McGraw–Hill Book Co., Inc., New York, 1957), 3rd ed.

Wilcox, D. A.

K. R. Crowe, J. L. Gumnick, D. A. Wilcox, “Improved Quantum Efficiency Laser Detectors”, Tech. Rept. AFAL-TR-66–199, prepared by ITT Industrial Laboratories, Indiana, for the Air Force Avionics LaboratoryWright-Patterson AFB, Ohio.

Wooten, F.

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
[CrossRef]

Appl. Opt.

IEEE Trans.

John Sizelove, J. Love, IEEE Trans. ED-13, 98 (1966).

Proc. IEEE

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
[CrossRef]

Z. Physik

K. Deutscher, Z. Physik 151, 536 (1958).
[CrossRef]

Other

Bilyie E. Rambo, “Improved Long Wavelength Response of Photoemissive Surfaces”. Technical Documentary Report Nr. AL-TDR-64-19, prepared for the Air Force Avionics Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson AFB, Ohio.

John L. Gumnick, “Improved Quantum Efficiency Laser Detectors”. Technical Report AFAL-TR-65-190 (July1965), prepared by ITT Industrial Laboratories, Indiana, for the Air Force Avionics Laboratory, Wright-Patterson AFB, Ohio.

F. A. Jenkins, H. White, Fundamentals of Optics (McGraw–Hill Book Co., Inc., New York, 1957), 3rd ed.

K. R. Crowe, J. L. Gumnick, D. A. Wilcox, “Improved Quantum Efficiency Laser Detectors”, Tech. Rept. AFAL-TR-66–199, prepared by ITT Industrial Laboratories, Indiana, for the Air Force Avionics LaboratoryWright-Patterson AFB, Ohio.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Mathematical model. (R, R0, R1 ≡ reflection coefficients.)

Fig. 2
Fig. 2

Experimental model.

Fig. 3
Fig. 3

Gain vs angle of incidence. (P = 0.2)

Fig. 4
Fig. 4

Gain vs absorption coefficient—thickness product (β = 0°, l = 300 Å).

Fig. 5
Fig. 5

Quantum yield vs thickness.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Y = 0 T [ No . of photoelectrons stimulated ] × [ Electron escape prob . ] d x ,
Y = 0 T α ( I I 0 ) e - ( T - x ) / l d x ,
I / I 0 = [ e - α x + R e - α ( 2 T - x ) ] / [ 1 - R R 0 e - 2 α T ] .
Y = P ( e - τ - e - P τ ) / ( P - 1 ) + P R e P τ [ 1 - e - ( P + 1 ) τ ] / ( p + 1 ) 1 - R R 0 e - 2 P τ ,
G = Y P sec θ / Y P .
G = F Y P sec θ / Y P ,
R 0 = R 0 + ( 1 - R 0 ) R 1 .
F = C / N ,
N = [ ( 1 - R 1 ) ( 1 - R 0 ) ] / ( 1 - R 0 R 1 ) .
C 1 = 1 - [ sin 2 ( ϕ - β ) / sin 2 ( ϕ + β ) ] ,
θ = 45° ± ϕ ( ± applies to ± β ) .
C 2 = [ 1 - R 0 ( θ ) ] / [ 1 - R 0 ( θ ) R 1 ( θ ) ]

Metrics