Abstract

Some effects connected with multiple passes of pump radiation in laser pump cavities are discussed. These effects include changes in mercury arc lamp operating characteristics, when the lamps are used inside the cavities as pump sources, and unexpectedly low pulse (but not cw) thresholds in double elliptical cavities. It is shown analytically that these effects can, at least in part, be attributed to the shapes of the pump light energy distribution curves after multiple passes through the pump cavities, and to the relative opacities of flash and continuous lamps.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. Inst. Radio Engrs. 49, 960 (1961).
  2. “Research on Coherent Generation of Optical Radiation,” Interim Scientific Report No. 1, Contract AF 33(616)-8233, Hughes Research Laboratories, Malibu, Calif., 1961.
  3. C. Bowness, D. Missio, T. Rogala, Proc. Inst. Radio Engrs. 50, 1704 (1962).
  4. T. Li, S. D. Sims, Proc. Inst. Radio Engrs. 50, 464 (1962).
  5. S. B. Schuldt, R. L. Aagard, Appl. Opt. 2, 509 (1963).
    [CrossRef]
  6. J. A. Ackerman, Proc. IEEE 51, 1032 (1963).
    [CrossRef]
  7. C. Bowness, Appl. Opt. 4, 103 (1965).
    [CrossRef]
  8. V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
    [CrossRef]
  9. J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
    [CrossRef]

1965 (2)

V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
[CrossRef]

C. Bowness, Appl. Opt. 4, 103 (1965).
[CrossRef]

1964 (1)

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

1963 (2)

1962 (2)

C. Bowness, D. Missio, T. Rogala, Proc. Inst. Radio Engrs. 50, 1704 (1962).

T. Li, S. D. Sims, Proc. Inst. Radio Engrs. 50, 464 (1962).

1961 (1)

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. Inst. Radio Engrs. 49, 960 (1961).

Aagard, R. L.

Ackerman, J. A.

J. A. Ackerman, Proc. IEEE 51, 1032 (1963).
[CrossRef]

Bowness, C.

C. Bowness, Appl. Opt. 4, 103 (1965).
[CrossRef]

C. Bowness, D. Missio, T. Rogala, Proc. Inst. Radio Engrs. 50, 1704 (1962).

Ciftan, M.

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. Inst. Radio Engrs. 49, 960 (1961).

Emmett, J. L.

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

Evtuhov, V.

V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
[CrossRef]

Li, T.

T. Li, S. D. Sims, Proc. Inst. Radio Engrs. 50, 464 (1962).

Luck, C. F.

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. Inst. Radio Engrs. 49, 960 (1961).

Missio, D.

C. Bowness, D. Missio, T. Rogala, Proc. Inst. Radio Engrs. 50, 1704 (1962).

Neeland, J. K.

V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
[CrossRef]

Rogala, T.

C. Bowness, D. Missio, T. Rogala, Proc. Inst. Radio Engrs. 50, 1704 (1962).

Schawlow, A. L.

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

Schuldt, S. B.

Shafer, C. G.

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. Inst. Radio Engrs. 49, 960 (1961).

Sims, S. D.

T. Li, S. D. Sims, Proc. Inst. Radio Engrs. 50, 464 (1962).

Statz, H.

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. Inst. Radio Engrs. 49, 960 (1961).

Weinberg, E. H.

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Letters (1)

V. Evtuhov, J. K. Neeland, Appl. Phys. Letters 6, 75 (1965).
[CrossRef]

J. Appl. Phys. (1)

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 2601 (1964).
[CrossRef]

Proc. IEEE (1)

J. A. Ackerman, Proc. IEEE 51, 1032 (1963).
[CrossRef]

Proc. Inst. Radio Engrs. (3)

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. Inst. Radio Engrs. 49, 960 (1961).

C. Bowness, D. Missio, T. Rogala, Proc. Inst. Radio Engrs. 50, 1704 (1962).

T. Li, S. D. Sims, Proc. Inst. Radio Engrs. 50, 464 (1962).

Other (1)

“Research on Coherent Generation of Optical Radiation,” Interim Scientific Report No. 1, Contract AF 33(616)-8233, Hughes Research Laboratories, Malibu, Calif., 1961.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Notation used in the simplified single-pass analysis of an elliptical pump cavity.

Fig. 2
Fig. 2

Limits of integration for the integral I1 as functions of the position on a line through the focus and normal to the major axis of the ellipse.

Fig. 3
Fig. 3

Multiple ellipse configuration.

Fig. 4
Fig. 4

Relative flash lamp light output in the blue-green portion of the spectrum as a function of electrical input. ● Single PEK XE2–2 lamp. □ Two PEX XE2–2 lamps in series. 25-μF total capacitance. 65-μsec square pulse.

Fig. 5
Fig. 5

Notation used in the analysis of elliptical pump cavities.

Fig. 6
Fig. 6

Approximate pump energy distribution in the plane perpendicular to the major axis at the laser rod location after one and two passes through the single ellipse pump cavity (e = 0.4).

Fig. 7
Fig. 7

Approximate pump energy distribution in the plane of the major axis at the laser rod location after one or two passes through the double ellipse pump cavity (e = 0.4).

Tables (2)

Tables Icon

Table I Measured Pulse Thresholds in Single and Double Elliptical Cavities under Various Conditions

Tables Icon

Table II Dependence of Mercury Lamp Performance in a Single Elliptical Cylinder Cavity on the Amount of Light Allowed to Return to the Lamp

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

d F = ( P T / 2 π ) d θ .
α = 2 ρ s / l 1 .
d U = P T 4 π c ρ s l 1 l 2 d θ .
l 1 = a + e x l 2 = a - e x d θ = - a a + e x ( 1 - e 2 a 2 - x 2 ) ½ d x .
U = P T 2 ρ s c I 1 2 π .
I 1 = 2 - a a a a - e x ( 1 - e 2 a 2 - x 2 ) ½ d x = 2 0 π d Ψ = 2 π .
U = P T / 2 ρ s c .
2 ρ 1 ( min ) = 2 ρ s 1 - e 1 + e .
ξ ± ρ / cos Ψ ,
ρ = ρ s 1 - e 2 ( 1 + e 2 ) - 2 e cos Ψ .
cos Ψ = e 2 + 1 4 e { 1 ± [ 1 ± 8 e 1 - e 2 ( 1 + e 2 ) 2 ρ s ζ ] ½ } .
U = ( P T / 2 ρ s c ) ( Ψ 2 - Ψ 1 ) / π .
2 ρ 1 ( max ) = 2 ρ s ( 1 + e ) / ( 1 - e ) .
I 2 = 0 π / 2 d Ψ = 2 π .
2 ρ 2 ( min ) = 2 ρ s ( 1 - e 2 ) / ( 1 + e 2 ) .
Ψ max = π / n .
I n = 2 n Ψ | 0 π / n = 2 π .
d U = P T 4 π c ρ s l 1 l 2 l 3 l 4 l 5 l 6 d θ ,
2 ρ = 2 ρ s l 2 l 4 l 6 / l 1 l 3 l 5 .
U 1 = P T ( 1 - e 2 ) 2 a 4 π c ρ s 2 - a a × 1 a ( 1 + 10 e 2 + 5 e 4 ) - ( 5 + 10 e 2 + e 4 ) e x ( 1 - e 2 a 2 - x 2 ) ½ d x = P T 2 ρ s c
2 ρ 1 = 2 ρ s a ( 1 + 10 e 2 + 5 e 4 ) - ( 5 + 10 e 2 + e 4 ) e x ( 1 - e 2 ) 2 ( a + e x )
2 ρ 1 ( min ) = 2 ρ s ( 1 - e 1 + e ) 3 ( in the direction perpendicular to the major axis )
2 ρ 1 ( max ) = 2 ρ s ( 1 + e 1 - e ) 3 ( in the direction perpendicular to the major axis )
U 2 = P T / 2 ρ s c
2 ρ 1 ( min ) = 2 ρ s ( 1 - e 2 ) / ( 1 + e 2 ) ( in the direction along the major axis )
2 ρ 2 ( max ) = 2 ρ s ( 1 + e ) / ( 1 - e ) ( in the direction perpendicular to the major axis ) .

Metrics