Abstract

The impact of the latest optical and electronic component developments on far uv rocket spectrophotometry is discussed. Results of some recent experiments studying earth airglow and aurorae are reviewed. It is shown that weaker spectral features can be measured in the region 1100 Å to 3000 Å than at any longer wavelength.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Fastie, J. Opt. Soc. Am. 42, 641 (1952).
    [Crossref]
  2. W. G. Fastie, J. Quant. Spectry. Radiative Transfer 3, 505 (1963).
    [Crossref]
  3. G. Haas, R. Tousey, J. Opt. Soc. Am. 9, 593 (1959).
    [Crossref]
  4. L. Dunkelman, W. B. Fowler, J. Hennes, Appl. Opt. 1, 695 (1962).
    [Crossref]
  5. W. G. Fastie, H. M. Crosswhite, T. P. Markham, Ann. Geophys. 17, 109 (1961).
  6. H. M. Crosswhite, E. C. Zipf, W. G. Fastie, J. Opt. Soc. Am. 52, 643 (1962).
    [Crossref]
  7. C. A. Barth, J. Geophys. Res. 69, 3301 (1964).
    [Crossref]
  8. W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
    [Crossref]
  9. W. G. Fastie, J. Opt. Soc. Am. 51, 1472 (1961) (A).

1964 (2)

C. A. Barth, J. Geophys. Res. 69, 3301 (1964).
[Crossref]

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[Crossref]

1963 (1)

W. G. Fastie, J. Quant. Spectry. Radiative Transfer 3, 505 (1963).
[Crossref]

1962 (2)

1961 (2)

W. G. Fastie, J. Opt. Soc. Am. 51, 1472 (1961) (A).

W. G. Fastie, H. M. Crosswhite, T. P. Markham, Ann. Geophys. 17, 109 (1961).

1959 (1)

G. Haas, R. Tousey, J. Opt. Soc. Am. 9, 593 (1959).
[Crossref]

1952 (1)

Barth, C. A.

C. A. Barth, J. Geophys. Res. 69, 3301 (1964).
[Crossref]

Crosswhite, H. M.

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[Crossref]

H. M. Crosswhite, E. C. Zipf, W. G. Fastie, J. Opt. Soc. Am. 52, 643 (1962).
[Crossref]

W. G. Fastie, H. M. Crosswhite, T. P. Markham, Ann. Geophys. 17, 109 (1961).

Dunkelman, L.

Fastie, W. G.

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[Crossref]

W. G. Fastie, J. Quant. Spectry. Radiative Transfer 3, 505 (1963).
[Crossref]

H. M. Crosswhite, E. C. Zipf, W. G. Fastie, J. Opt. Soc. Am. 52, 643 (1962).
[Crossref]

W. G. Fastie, H. M. Crosswhite, T. P. Markham, Ann. Geophys. 17, 109 (1961).

W. G. Fastie, J. Opt. Soc. Am. 51, 1472 (1961) (A).

W. G. Fastie, J. Opt. Soc. Am. 42, 641 (1952).
[Crossref]

Fowler, W. B.

Haas, G.

G. Haas, R. Tousey, J. Opt. Soc. Am. 9, 593 (1959).
[Crossref]

Heath, D. F.

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[Crossref]

Hennes, J.

Markham, T. P.

W. G. Fastie, H. M. Crosswhite, T. P. Markham, Ann. Geophys. 17, 109 (1961).

Tousey, R.

G. Haas, R. Tousey, J. Opt. Soc. Am. 9, 593 (1959).
[Crossref]

Zipf, E. C.

Ann. Geophys. (1)

W. G. Fastie, H. M. Crosswhite, T. P. Markham, Ann. Geophys. 17, 109 (1961).

Appl. Opt. (1)

J. Geophys. Res. (2)

C. A. Barth, J. Geophys. Res. 69, 3301 (1964).
[Crossref]

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[Crossref]

J. Opt. Soc. Am. (4)

W. G. Fastie, J. Opt. Soc. Am. 51, 1472 (1961) (A).

H. M. Crosswhite, E. C. Zipf, W. G. Fastie, J. Opt. Soc. Am. 52, 643 (1962).
[Crossref]

G. Haas, R. Tousey, J. Opt. Soc. Am. 9, 593 (1959).
[Crossref]

W. G. Fastie, J. Opt. Soc. Am. 42, 641 (1952).
[Crossref]

J. Quant. Spectry. Radiative Transfer (1)

W. G. Fastie, J. Quant. Spectry. Radiative Transfer 3, 505 (1963).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Source–collector–detector geometry.

Fig. 2
Fig. 2

Transmission curves of window materials.

Fig. 3
Fig. 3

Optical diagram of Ebert spectrophotometer.

Fig. 4
Fig. 4

Auroral spectra in the region 1100–1540 Å. The top spectrum was obtained in 1965 with presently available optical components. The bottom spectrum was obtained in 1960 with the same observation time from an aurora that was ten times as bright as the 1965 aurora.

Fig. 5
Fig. 5

The spectrum of NO obtained in the day airglow by Barth6 in 1 sec of observation time. The top spectrum is calculated, the bottom is the unretouched telemetry trace.

Fig. 6
Fig. 6

Spectrum of the far uv day airglow showing four spectral features in the region 1200–1360 Å.

Fig. 7
Fig. 7

Altitude profiles of OI 1304 (3S–3P) day airglow and OI 1356 (5S–3P) day airglow.

Fig. 8
Fig. 8

Two-section baffle for day airglow photometers and spectrophotometers.

Fig. 9
Fig. 9

Diagram of simple field of view limiters.

Fig. 10
Fig. 10

Coronagraph telescope for airglow measurements.

Fig. 11
Fig. 11

Multiple mirror illuminator for enhancing signal from sources of limited area.

Fig. 12
Fig. 12

End view of seven-element multiple mirror system.

Fig. 13
Fig. 13

Automatic tracking double image optical system.

Fig. 14
Fig. 14

Secondary mirror modification to provide double image.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S p e = B s s ( A c A d / F 2 ) Q T ,
S p e = B s s A g cos α ( L W / F 2 ) Q R 2 B g ,
S p e = c B s s A g sin α ( L / F ) Q R 2 B g .
B s s = ( R / 4 π × 10 6 ) ,

Metrics