Abstract

An investigation has been made of voltage-sensitivity characteristics, absolute spectral response, dark current and output current limitations of seven photomultipliers suitable for detection of extreme uv radiation. These photomultipliers are windowless types, utilizing cathode surfaces blind to visible and near uv radiation; they include a microminiature continuous channel multiplier. For measurements of absolute spectral sensitivity, they were compared to a conventional 1P21, coated with sodium salicylate which, in turn, had been calibrated at 1216 Å with a nitric oxide ionization chamber. The spectral response measurements cover the spectral region from 1500 Å to 584 Å. The photomultipliers were used in a do output currrent mode and were excited with radiation from both pulsed and do gas discharge-sources. A discussion of the suitability of the detectors for use with each type of source is given.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Allen, Rev. Sci. Instr. 18, 739 (1947).
    [CrossRef]
  2. A H. Morrish, G. W. Williams, E. K. Darby, Rev. Sci. Instr. 21, 884 (1950).
    [CrossRef]
  3. E. R. Piore, G. G. Harvey, E. M. Gyorgy, R. H. Kingston, Rev. Sci. Instr. 23, 8 (1952).
    [CrossRef]
  4. F. S. Johnson, K. Watanabe, R. Tousey, J. Opt. Soc. Am. 41, 702 (1951).
    [CrossRef]
  5. K. Watanabe, C. Y. Inn, J. Opt. Soc. Am. 43, 32 (1953).
    [CrossRef]
  6. For a clear discussion of dynode geometries and many other general features of photomultiplier design, see J. Sharpe, Electron. Tech. 38, 248 (1961), or J. Sharpe, E. E. Thomson, Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (IEEE Electrical Publications, Ltd., London, 1958), Vol. 14, p. 311.
  7. L. Heroux, H. E. Hinteregger, Rev. Sci. Instr. 31, 280 (1960).
    [CrossRef]
  8. G. W. Goodrich, W. C. Wiley, Rev. Sci. Instr. 32, 846 (1961).
    [CrossRef]
  9. W. C. Wiley, C. F. Hendee, Inst. Radio Engrs. Trans. NS-9, 103 (1962).
  10. W. R. Hunter, in Space Research III (North Holland Publishing Co., Amsterdam, 1963).
  11. W. R. Hunter, in Proceedings of the Xth Colloquium Spectroscopicum Internationale (Spartan Publishing Co., Washington, D.C., 1962).
  12. T. A. Chubb, H. Friedman, Rev. Sci. Instr. 26, 493 (1955).
    [CrossRef]
  13. J. A. R. Samson, J. Opt. Soc. Am. 54, 6 (1964).
    [CrossRef]
  14. R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
    [CrossRef]
  15. D. L. Lind, N. McIlwraith, IEEE Trans. NS-13, 511 (1966).
  16. K. C. Schmidt, C. F. Hendee, IEEE Trans. NS-13, 100 (1966).
  17. J. Adams, B. W. Manley, IEEE Trans. NS-13, 88 (1966).

1966 (3)

D. L. Lind, N. McIlwraith, IEEE Trans. NS-13, 511 (1966).

K. C. Schmidt, C. F. Hendee, IEEE Trans. NS-13, 100 (1966).

J. Adams, B. W. Manley, IEEE Trans. NS-13, 88 (1966).

1964 (1)

1962 (1)

W. C. Wiley, C. F. Hendee, Inst. Radio Engrs. Trans. NS-9, 103 (1962).

1961 (2)

G. W. Goodrich, W. C. Wiley, Rev. Sci. Instr. 32, 846 (1961).
[CrossRef]

For a clear discussion of dynode geometries and many other general features of photomultiplier design, see J. Sharpe, Electron. Tech. 38, 248 (1961), or J. Sharpe, E. E. Thomson, Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (IEEE Electrical Publications, Ltd., London, 1958), Vol. 14, p. 311.

1960 (1)

L. Heroux, H. E. Hinteregger, Rev. Sci. Instr. 31, 280 (1960).
[CrossRef]

1957 (1)

R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
[CrossRef]

1955 (1)

T. A. Chubb, H. Friedman, Rev. Sci. Instr. 26, 493 (1955).
[CrossRef]

1953 (1)

1952 (1)

E. R. Piore, G. G. Harvey, E. M. Gyorgy, R. H. Kingston, Rev. Sci. Instr. 23, 8 (1952).
[CrossRef]

1951 (1)

1950 (1)

A H. Morrish, G. W. Williams, E. K. Darby, Rev. Sci. Instr. 21, 884 (1950).
[CrossRef]

1947 (1)

J. S. Allen, Rev. Sci. Instr. 18, 739 (1947).
[CrossRef]

Adams, J.

J. Adams, B. W. Manley, IEEE Trans. NS-13, 88 (1966).

Allen, J. S.

J. S. Allen, Rev. Sci. Instr. 18, 739 (1947).
[CrossRef]

Chubb, T. A.

T. A. Chubb, H. Friedman, Rev. Sci. Instr. 26, 493 (1955).
[CrossRef]

Darby, E. K.

A H. Morrish, G. W. Williams, E. K. Darby, Rev. Sci. Instr. 21, 884 (1950).
[CrossRef]

Engstrom, R. W.

R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
[CrossRef]

Fischer, E.

R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
[CrossRef]

Friedman, H.

T. A. Chubb, H. Friedman, Rev. Sci. Instr. 26, 493 (1955).
[CrossRef]

Goodrich, G. W.

G. W. Goodrich, W. C. Wiley, Rev. Sci. Instr. 32, 846 (1961).
[CrossRef]

Gyorgy, E. M.

E. R. Piore, G. G. Harvey, E. M. Gyorgy, R. H. Kingston, Rev. Sci. Instr. 23, 8 (1952).
[CrossRef]

Harvey, G. G.

E. R. Piore, G. G. Harvey, E. M. Gyorgy, R. H. Kingston, Rev. Sci. Instr. 23, 8 (1952).
[CrossRef]

Hendee, C. F.

K. C. Schmidt, C. F. Hendee, IEEE Trans. NS-13, 100 (1966).

W. C. Wiley, C. F. Hendee, Inst. Radio Engrs. Trans. NS-9, 103 (1962).

Heroux, L.

L. Heroux, H. E. Hinteregger, Rev. Sci. Instr. 31, 280 (1960).
[CrossRef]

Hinteregger, H. E.

L. Heroux, H. E. Hinteregger, Rev. Sci. Instr. 31, 280 (1960).
[CrossRef]

Hunter, W. R.

W. R. Hunter, in Proceedings of the Xth Colloquium Spectroscopicum Internationale (Spartan Publishing Co., Washington, D.C., 1962).

W. R. Hunter, in Space Research III (North Holland Publishing Co., Amsterdam, 1963).

Inn, C. Y.

Johnson, F. S.

Kingston, R. H.

E. R. Piore, G. G. Harvey, E. M. Gyorgy, R. H. Kingston, Rev. Sci. Instr. 23, 8 (1952).
[CrossRef]

Lind, D. L.

D. L. Lind, N. McIlwraith, IEEE Trans. NS-13, 511 (1966).

Manley, B. W.

J. Adams, B. W. Manley, IEEE Trans. NS-13, 88 (1966).

McIlwraith, N.

D. L. Lind, N. McIlwraith, IEEE Trans. NS-13, 511 (1966).

Morrish, A H.

A H. Morrish, G. W. Williams, E. K. Darby, Rev. Sci. Instr. 21, 884 (1950).
[CrossRef]

Piore, E. R.

E. R. Piore, G. G. Harvey, E. M. Gyorgy, R. H. Kingston, Rev. Sci. Instr. 23, 8 (1952).
[CrossRef]

Samson, J. A. R.

Schmidt, K. C.

K. C. Schmidt, C. F. Hendee, IEEE Trans. NS-13, 100 (1966).

Sharpe, J.

For a clear discussion of dynode geometries and many other general features of photomultiplier design, see J. Sharpe, Electron. Tech. 38, 248 (1961), or J. Sharpe, E. E. Thomson, Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (IEEE Electrical Publications, Ltd., London, 1958), Vol. 14, p. 311.

Tousey, R.

Watanabe, K.

Wiley, W. C.

W. C. Wiley, C. F. Hendee, Inst. Radio Engrs. Trans. NS-9, 103 (1962).

G. W. Goodrich, W. C. Wiley, Rev. Sci. Instr. 32, 846 (1961).
[CrossRef]

Williams, G. W.

A H. Morrish, G. W. Williams, E. K. Darby, Rev. Sci. Instr. 21, 884 (1950).
[CrossRef]

Electron. Tech. (1)

For a clear discussion of dynode geometries and many other general features of photomultiplier design, see J. Sharpe, Electron. Tech. 38, 248 (1961), or J. Sharpe, E. E. Thomson, Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (IEEE Electrical Publications, Ltd., London, 1958), Vol. 14, p. 311.

IEEE Trans. (3)

D. L. Lind, N. McIlwraith, IEEE Trans. NS-13, 511 (1966).

K. C. Schmidt, C. F. Hendee, IEEE Trans. NS-13, 100 (1966).

J. Adams, B. W. Manley, IEEE Trans. NS-13, 88 (1966).

Inst. Radio Engrs. Trans. (1)

W. C. Wiley, C. F. Hendee, Inst. Radio Engrs. Trans. NS-9, 103 (1962).

J. Opt. Soc. Am. (3)

Rev. Sci. Instr. (7)

L. Heroux, H. E. Hinteregger, Rev. Sci. Instr. 31, 280 (1960).
[CrossRef]

G. W. Goodrich, W. C. Wiley, Rev. Sci. Instr. 32, 846 (1961).
[CrossRef]

T. A. Chubb, H. Friedman, Rev. Sci. Instr. 26, 493 (1955).
[CrossRef]

J. S. Allen, Rev. Sci. Instr. 18, 739 (1947).
[CrossRef]

A H. Morrish, G. W. Williams, E. K. Darby, Rev. Sci. Instr. 21, 884 (1950).
[CrossRef]

E. R. Piore, G. G. Harvey, E. M. Gyorgy, R. H. Kingston, Rev. Sci. Instr. 23, 8 (1952).
[CrossRef]

R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
[CrossRef]

Other (2)

W. R. Hunter, in Space Research III (North Holland Publishing Co., Amsterdam, 1963).

W. R. Hunter, in Proceedings of the Xth Colloquium Spectroscopicum Internationale (Spartan Publishing Co., Washington, D.C., 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photomultipliers which have been found useful at NRL for detection of XUV photons using dc output current measuring techniques.

Fig. 2
Fig. 2

A C7075 photomultiplier as received from the manufacturer (below) and the completely potted assembly ready for use in XUV instrumentation (above). Vacuum seal is accomplished by placing an O-ring on the shoulder molded into the epoxy base.

Fig. 3
Fig. 3

Single channel photomultiplier used as image dissector in the OSO-II spectroheliograph experiment (center). Below is a schematic illustrating channel multiplier operation. Length of this photomultiplier is 7.5 mm. Diameter of the sensitive area (small dark spot seen on the left end) is 0.15 mm. The point of a standard size wooden pencil is shown with the same magnifition at the top for comparison.

Fig. 4
Fig. 4

Sensitivity of the photomultipliers as a function of applied voltage at λ 584 Å. See text for units used in the vertical scale.

Fig. 5
Fig. 5

Sensitivity of the photomultipliers as a function of wavelength of the exciting photons.

Fig. 6
Fig. 6

Scans of the hydrogen many-lined spectrum using a visually blind photomultiplier (EM2B) and one with broad spectral response (1P21 sensitized with sodium salicylate.)

Fig. 7
Fig. 7

Demonstration of gain saturation of a continuous-dynode photomultiplier when used with an intense, pulsed light source. Lower trace in each oscillogram shows light source current pulse (vertical scale, 1000 A/cm); upper traces show photomultiplier anode pulses for operating voltage and vertical scale as marked. λ = 760 Å. Load resistance = 120 Ω.

Fig. 8
Fig. 8

Measurements of a neutral density filter using pulsed light source at two wavelengths and with multiplier gain varied to give direct beam signal currents as shown. Solid curve is for M306. Diamond shaped data points are for 304 Å; circles for 289 Å. Broken curve is for M306 modified to add a small amount of distributed capacitance to the dynode strip. Crosses are for 304 Å; triangles are for 289 Å.

Metrics