Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Horman, H. H. M. Chau, Appl. Opt. 6, 317 (1967).
    [CrossRef] [PubMed]
  2. M. H. Horman, Appl. Opt. 6, 1415 (1967).
    [CrossRef]
  3. D. Gabor, Proc. Roy. Soc. London A197, 454 (1949).
  4. G. L. Rogers, Proc. Roy. Soc. Edinburgh A63, 193 (1952).
  5. W. T. Cathey, J. Opt. Soc. Am. 55, 457 (1965).
    [CrossRef]
  6. G. L. Rogers, J. Opt. Soc. Am. 55, 1181 (1965).
    [CrossRef]
  7. R. W. Wood, Physical Optics (The Macmillan Co., New York, 1934), 3rd ed., p. 37.
  8. K. Miyamoto, J. Opt. Soc. Am. 51, 17 (1961).
    [CrossRef]

1967 (2)

1965 (2)

1961 (1)

1952 (1)

G. L. Rogers, Proc. Roy. Soc. Edinburgh A63, 193 (1952).

1949 (1)

D. Gabor, Proc. Roy. Soc. London A197, 454 (1949).

Cathey, W. T.

Chau, H. H. M.

Gabor, D.

D. Gabor, Proc. Roy. Soc. London A197, 454 (1949).

Horman, M. H.

Miyamoto, K.

Rogers, G. L.

G. L. Rogers, J. Opt. Soc. Am. 55, 1181 (1965).
[CrossRef]

G. L. Rogers, Proc. Roy. Soc. Edinburgh A63, 193 (1952).

Wood, R. W.

R. W. Wood, Physical Optics (The Macmillan Co., New York, 1934), 3rd ed., p. 37.

Appl. Opt. (2)

J. Opt. Soc. Am. (3)

Proc. Roy. Soc. Edinburgh (1)

G. L. Rogers, Proc. Roy. Soc. Edinburgh A63, 193 (1952).

Proc. Roy. Soc. London (1)

D. Gabor, Proc. Roy. Soc. London A197, 454 (1949).

Other (1)

R. W. Wood, Physical Optics (The Macmillan Co., New York, 1934), 3rd ed., p. 37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table I Flux Distribution for Phase Reversal Zone Plate

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F P ( θ ) = { e - i π / 2 , - π < θ < - π / 2 e i π / 2 , - π / 2 θ π / 2 e - i π / 2 , π / 2 < θ π .
F P ( θ ) = n = - e - i n θ 2 π - π π F p ( θ ) e i n θ d θ
F p ( θ ) = n = - [ e - i ( n θ - π / 2 ) π ( 2 sin ( 1 2 π n ) n - sin ( π n ) n ) ] ,
F p ( θ ) = 2 e i π / 2 π [ ( e i θ + e - i θ ) - 1 3 ( e i 3 θ + e - i 3 θ ) + 1 5 ( e i 5 θ + e - i 5 θ ) - ] .
A T = A R e i ψ R { 2 e i π / 2 π [ ( e i θ + e - i θ ) - 1 3 ( e i 3 θ + e - i 3 θ ) + 1 5 ( e i 5 θ + e - i 5 θ ) - ] } .

Metrics