Abstract

A method is described for measuring spectral emissivity differences in the 8–13 μ region between two points on the lunar surface which may have different temperatures. Spectral emissivity differences of 0.5% on the moon can be detected in this wavelength region, excluding the strong 9.2–10 μ atmospheric ozone band where the accuracy is reduced to 2%. The application of this method to the bright planets is discussed.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. P. Lyon, Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Soils: Part II. Rough and Powdered Surfaces, NASA Contract No. NASr–49 (04) (1964).
  2. R. A. Van Tassel, I. Simon, in The Lunar Surface Layer, J. Salisbury, P. Glaser, Eds. (Academic Press, Inc., New York, 1964).
  3. J. E. Conel, Jet Propulsion Laboratory Tech. Mem. No. 33–243 (1965).
  4. W. M. Sinton, J. Strong, Astrophys. J. 131, 459 (1960).
    [CrossRef]
  5. F. H. Murcray, J. Geophys. Res. 70, 4959 (1964).
    [CrossRef]
  6. G. R. Hunt, J. E. Salisbury, Science 146, 641 (1964).
    [CrossRef] [PubMed]
  7. J. A. Westphal, B. C. Murray, D. E. Martz, Appl. Opt. 2, 747 (1963).
    [CrossRef]
  8. P. J. Launer, Am. Mineralogist 37, 764 (1952).

1964 (2)

F. H. Murcray, J. Geophys. Res. 70, 4959 (1964).
[CrossRef]

G. R. Hunt, J. E. Salisbury, Science 146, 641 (1964).
[CrossRef] [PubMed]

1963 (1)

J. A. Westphal, B. C. Murray, D. E. Martz, Appl. Opt. 2, 747 (1963).
[CrossRef]

1960 (1)

W. M. Sinton, J. Strong, Astrophys. J. 131, 459 (1960).
[CrossRef]

1952 (1)

P. J. Launer, Am. Mineralogist 37, 764 (1952).

Conel, J. E.

J. E. Conel, Jet Propulsion Laboratory Tech. Mem. No. 33–243 (1965).

Hunt, G. R.

G. R. Hunt, J. E. Salisbury, Science 146, 641 (1964).
[CrossRef] [PubMed]

Launer, P. J.

P. J. Launer, Am. Mineralogist 37, 764 (1952).

Lyon, R. J. P.

R. J. P. Lyon, Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Soils: Part II. Rough and Powdered Surfaces, NASA Contract No. NASr–49 (04) (1964).

Martz, D. E.

J. A. Westphal, B. C. Murray, D. E. Martz, Appl. Opt. 2, 747 (1963).
[CrossRef]

Murcray, F. H.

F. H. Murcray, J. Geophys. Res. 70, 4959 (1964).
[CrossRef]

Murray, B. C.

J. A. Westphal, B. C. Murray, D. E. Martz, Appl. Opt. 2, 747 (1963).
[CrossRef]

Salisbury, J. E.

G. R. Hunt, J. E. Salisbury, Science 146, 641 (1964).
[CrossRef] [PubMed]

Simon, I.

R. A. Van Tassel, I. Simon, in The Lunar Surface Layer, J. Salisbury, P. Glaser, Eds. (Academic Press, Inc., New York, 1964).

Sinton, W. M.

W. M. Sinton, J. Strong, Astrophys. J. 131, 459 (1960).
[CrossRef]

Strong, J.

W. M. Sinton, J. Strong, Astrophys. J. 131, 459 (1960).
[CrossRef]

Van Tassel, R. A.

R. A. Van Tassel, I. Simon, in The Lunar Surface Layer, J. Salisbury, P. Glaser, Eds. (Academic Press, Inc., New York, 1964).

Westphal, J. A.

J. A. Westphal, B. C. Murray, D. E. Martz, Appl. Opt. 2, 747 (1963).
[CrossRef]

Am. Mineralogist (1)

P. J. Launer, Am. Mineralogist 37, 764 (1952).

Appl. Opt. (1)

J. A. Westphal, B. C. Murray, D. E. Martz, Appl. Opt. 2, 747 (1963).
[CrossRef]

Astrophys. J. (1)

W. M. Sinton, J. Strong, Astrophys. J. 131, 459 (1960).
[CrossRef]

J. Geophys. Res. (1)

F. H. Murcray, J. Geophys. Res. 70, 4959 (1964).
[CrossRef]

Science (1)

G. R. Hunt, J. E. Salisbury, Science 146, 641 (1964).
[CrossRef] [PubMed]

Other (3)

R. J. P. Lyon, Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Soils: Part II. Rough and Powdered Surfaces, NASA Contract No. NASr–49 (04) (1964).

R. A. Van Tassel, I. Simon, in The Lunar Surface Layer, J. Salisbury, P. Glaser, Eds. (Academic Press, Inc., New York, 1964).

J. E. Conel, Jet Propulsion Laboratory Tech. Mem. No. 33–243 (1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Quotients of Planck functions B1(λ,T1)/[B2(λ,T)], T is held constant at 300°K and T1. is varied from 260°K to 345°K in 5° steps.

Fig. 2
Fig. 2

(a) Raw spectra taken of the craters Copernicus and Plato according to Eq. (3). (b) Quotient of the spectra according to Eq. (5) plotted with its fitted polynomial. (c) Residuals r(λ) of the quotient.

Fig. 3
Fig. 3

The average of residuals of quotients of pairs of spectra of Plato/Plato, Plato/Copernicus, and Copernicus/Copernicus.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ ( λ ) = 1 ( λ ) - 2 ( λ ) ,
r ( λ ) = Δ ( λ ) / [ 2 ( λ ) ] ,
W ( λ ) Δ λ = G ( λ ) ( λ ) B ( λ , T ) A ( λ , t ) Δ λ ,
Q ( λ ) = W 1 ( λ ) / [ W 2 ( λ ) ] .
Q ( λ ) = 1 ( λ ) B 1 ( λ , T 1 ) A 1 ( λ , t ) 2 ( λ ) B 2 ( λ , T 2 ) A 2 ( λ , t ) .
P ( λ ) = a λ 2 + b λ + c
C ( λ ) = B 1 ( λ , T 1 ) / [ B 2 ( λ , T 2 ) ] ,
Q ( λ ) = 1 ( λ ) / [ 2 ( λ ) ] P ( λ ) ,
r ( λ ) = [ Q ( λ ) - P ( λ ) ] / [ P ( λ ) ] .

Metrics