Abstract

A compact echelle spectrometer–spectrograph has been designed for use at the Cassegrain focus of the University of Wisconsin 91-cm telescope at Pine Bluff. Laboratory results obtained with this instrument show that it has great potential for both stellar and nebular studies. Typical photographs and photoelectric scans of laboratory spectra are shown. A method of determining the profile of the echelle blaze is discussed. The instrument has high dispersion, 2.5 Å/mm at 5000 Å with a camera focal length of 0.5 m, and a spectral purity of 1.25 Å/mm of entrance slit.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Tousey, J. D. Purcell, D. L. Garrett, Appl. Opt. 6, 365 (1967).
    [CrossRef] [PubMed]
  2. A. K. Pierce, R. R. McMath, O. Mohler, Astron. J. 56, 137 (1951).
    [CrossRef]
  3. H. J. Smith, Tech. Mem. GRD–TM–57–6 (1957).
  4. I. M. Kopylov, N. V. Steshenko, Proc. Crimean Astrophys. Obs. 33, 308 (1965).
  5. G. R. Harrison, in Vistas in Astronomy, A. Beer, Ed. (Pergamon Press, London, 1955), Vol. 1, p. 405.
    [CrossRef]
  6. G. R. Harrison, J. Soc. Opt. Am. 39, 522 (1949).
    [CrossRef]
  7. W. A. Rense, Space Science Reviews, C. deJager, Ed. (Reidel Publishing Co., Holland, 1966), Vol. 5, p. 234.
    [CrossRef]
  8. A. D. Code, W. C. Liller, in Stars and Stellar Systems, W. A. Hiltner, Ed. (Univerity of Chicago Press, Chicago, 1962), Vol. 2, p. 281.

1967 (1)

1965 (1)

I. M. Kopylov, N. V. Steshenko, Proc. Crimean Astrophys. Obs. 33, 308 (1965).

1951 (1)

A. K. Pierce, R. R. McMath, O. Mohler, Astron. J. 56, 137 (1951).
[CrossRef]

1949 (1)

G. R. Harrison, J. Soc. Opt. Am. 39, 522 (1949).
[CrossRef]

Code, A. D.

A. D. Code, W. C. Liller, in Stars and Stellar Systems, W. A. Hiltner, Ed. (Univerity of Chicago Press, Chicago, 1962), Vol. 2, p. 281.

Garrett, D. L.

Harrison, G. R.

G. R. Harrison, J. Soc. Opt. Am. 39, 522 (1949).
[CrossRef]

G. R. Harrison, in Vistas in Astronomy, A. Beer, Ed. (Pergamon Press, London, 1955), Vol. 1, p. 405.
[CrossRef]

Kopylov, I. M.

I. M. Kopylov, N. V. Steshenko, Proc. Crimean Astrophys. Obs. 33, 308 (1965).

Liller, W. C.

A. D. Code, W. C. Liller, in Stars and Stellar Systems, W. A. Hiltner, Ed. (Univerity of Chicago Press, Chicago, 1962), Vol. 2, p. 281.

McMath, R. R.

A. K. Pierce, R. R. McMath, O. Mohler, Astron. J. 56, 137 (1951).
[CrossRef]

Mohler, O.

A. K. Pierce, R. R. McMath, O. Mohler, Astron. J. 56, 137 (1951).
[CrossRef]

Pierce, A. K.

A. K. Pierce, R. R. McMath, O. Mohler, Astron. J. 56, 137 (1951).
[CrossRef]

Purcell, J. D.

Rense, W. A.

W. A. Rense, Space Science Reviews, C. deJager, Ed. (Reidel Publishing Co., Holland, 1966), Vol. 5, p. 234.
[CrossRef]

Smith, H. J.

H. J. Smith, Tech. Mem. GRD–TM–57–6 (1957).

Steshenko, N. V.

I. M. Kopylov, N. V. Steshenko, Proc. Crimean Astrophys. Obs. 33, 308 (1965).

Tousey, R.

Appl. Opt. (1)

Astron. J. (1)

A. K. Pierce, R. R. McMath, O. Mohler, Astron. J. 56, 137 (1951).
[CrossRef]

J. Soc. Opt. Am. (1)

G. R. Harrison, J. Soc. Opt. Am. 39, 522 (1949).
[CrossRef]

Proc. Crimean Astrophys. Obs. (1)

I. M. Kopylov, N. V. Steshenko, Proc. Crimean Astrophys. Obs. 33, 308 (1965).

Other (4)

G. R. Harrison, in Vistas in Astronomy, A. Beer, Ed. (Pergamon Press, London, 1955), Vol. 1, p. 405.
[CrossRef]

H. J. Smith, Tech. Mem. GRD–TM–57–6 (1957).

W. A. Rense, Space Science Reviews, C. deJager, Ed. (Reidel Publishing Co., Holland, 1966), Vol. 5, p. 234.
[CrossRef]

A. D. Code, W. C. Liller, in Stars and Stellar Systems, W. A. Hiltner, Ed. (Univerity of Chicago Press, Chicago, 1962), Vol. 2, p. 281.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of an echelle in a Littrow mounting. The angles of incidence and diffraction are i and θ, respectively. The groove width s = d cosi; the groove depth t = d sini; GN is the grating normal. The angle of deviation ϕ is small.

Fig. 2
Fig. 2

Schematic diagram of an echelle spectrometer–spectrograph. Only the central ray is shown. M1 and M2 are the collimator and camera mirrors, respectively, S is the entrance slit, E is the echelle, G is the grating. FP is the focal plane, γ is the angle between the principal ray and a plane perpendicular to the echelle rulings containing the normal to the echelle.

Fig. 3
Fig. 3

Typical echellograms with representative features identified. In both photographs longer wavelengths are at the right. Entrance slit width was 0.1 mm; grating dispersion was 33 Å/mm. (a) Ne discharge lamp, λ5750–6700 Å, (b) Hg–Cd discharge lamp, λ3600–4600 Å. The arrow points to two lines 0.4 Å apart.

Fig. 4
Fig. 4

Tracings of spectrometer scans taken with 0.25-mm entrance and exit slits. (a) Yellow lines of Hg with half-intensity widths of 0.9 Å. (b) Two overlapping orders of Hg and Cd uv lines.

Fig. 5
Fig. 5

Full curve: Envelope of the measured echelle blaze function. Dashed curve: Tracing of single-slit diffraction curve. The positions and intensities of the Hg lines λ5770–90 are shown in two orders. The intensities are scaled so that λ5790 in order m matches the measured curve. The center of the blaze function is at λ5814 in order m and λ5754 in order m+1.

Tables (1)

Tables Icon

Table I Characteristics of Two Typical Echelles Assuming a Camera Focal Length = 50 cm, tani = 2.0

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

m λ = d ( sin i + sin θ ) = t ( 1 + cos ϕ ) - s sin ϕ = 2 d sin i ( for small ϕ ) ,
Δ θ / Δ λ = m / d cos θ = ( 2 / λ ) tan i ,
λ / δ λ = m N = ( 2 N d / λ ) sin i = ( 2 W / λ ) sin i ,
δ θ = λ / d cos θ = ( 2 / m ) tan i .
δ λ = λ / m = λ 2 / 2 d sin i .
l = f δ θ = ( 2 f / m ) tan i = f λ / d cos i ,
Δ l / Δ λ = ( 2 f / λ ) tan i .
m λ = t cos γ ( 1 + cos ϕ ) - s sin ϕ = 2 d cos γ sin i ( for small ϕ ) .
Δ θ / Δ λ = m / d cos i = ( 2 / λ ) cos γ tan i ,
δ θ = λ / d cos i = ( 2 / m ) cos γ tan i ,
δ λ = λ 2 / 2 d cos γ sin i .
Δ λ min = Δ s / [ f col ( Δ θ / Δ λ ) ] ,

Metrics