Abstract

Two parameters are discussed: (1) the orientation of the plate assembly, consisting of the original hologram and a copy plate, relative to a laser copying beam, and (2) the separation between the original hologram and the copy plate. The data presented demonstrate that the optimum arrangement for the production of hologram copies requires that the plate assembly be held in vacuum contact, and that the laser copy beam enters the plate assembly in the reference beam direction of the original hologram. These optimum copies display reconstructed virtual images identical in angular extent and similar in quality to those reconstructed from the original. Copies made at angles other than the optimum angle display only certain portions of the original scene. The portion of the scene displayed is related to the copy angle and the angle in which light was scattered when the original hologram was exposed.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).
  2. G. L. Rogers, Proc. Roy. Soc. (Edinburgh), A63, 193 (1952).
  3. E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1952).
    [CrossRef]
  4. F. S. Harris, G. C. Sherman, B. H. Billings, Appl. Opt. 5, 665 (1966).
    [CrossRef] [PubMed]
  5. M. J. Landry, Appl. Phys. Letters 9, 303 (1966).
    [CrossRef]
  6. H. W. Rose, J. Opt. Soc. Am. 56, 542 (1966).
  7. F. B. Rotz, A. A. Friesem, Appl. Phys. Letters 8, 146 (1966).
    [CrossRef]
  8. D. B. Brumm, Appl. Opt. 5, 1946 (1966).
    [CrossRef] [PubMed]
  9. G. C. Sherman, Appl. Opt. 6, 1749 (1967).
    [CrossRef] [PubMed]
  10. D. B. Brumm, Appl. Opt. 6, 589 (1967).
    [CrossRef]
  11. G. L. Rogers, J. Sci. Instr. 43, 677 (1966).
    [CrossRef]
  12. G. W. Stroke, An Introduction to Coherent Optics and Holography (Academic Press Inc., New York, 1966).
  13. W. E. Kock, J. Rendeiro, Proc. IEEE 53, 1787 (1965).
    [CrossRef]
  14. E. G. Ramberg, RCA Rev. 27, 467 (1966).
  15. R. W. Meier, J. Opt. Soc. Am. 56, 219 (1966).
    [CrossRef]
  16. R. W. Meier, J. Opt. Soc. Am. 55, 987 (1865).

1967 (2)

1966 (8)

R. W. Meier, J. Opt. Soc. Am. 56, 219 (1966).
[CrossRef]

M. J. Landry, Appl. Phys. Letters 9, 303 (1966).
[CrossRef]

H. W. Rose, J. Opt. Soc. Am. 56, 542 (1966).

F. B. Rotz, A. A. Friesem, Appl. Phys. Letters 8, 146 (1966).
[CrossRef]

G. L. Rogers, J. Sci. Instr. 43, 677 (1966).
[CrossRef]

E. G. Ramberg, RCA Rev. 27, 467 (1966).

F. S. Harris, G. C. Sherman, B. H. Billings, Appl. Opt. 5, 665 (1966).
[CrossRef] [PubMed]

D. B. Brumm, Appl. Opt. 5, 1946 (1966).
[CrossRef] [PubMed]

1965 (1)

W. E. Kock, J. Rendeiro, Proc. IEEE 53, 1787 (1965).
[CrossRef]

1952 (2)

E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1952).
[CrossRef]

G. L. Rogers, Proc. Roy. Soc. (Edinburgh), A63, 193 (1952).

1949 (1)

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).

1865 (1)

Billings, B. H.

Brumm, D. B.

Friesem, A. A.

F. B. Rotz, A. A. Friesem, Appl. Phys. Letters 8, 146 (1966).
[CrossRef]

Gabor, D.

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).

Harris, F. S.

Kock, W. E.

W. E. Kock, J. Rendeiro, Proc. IEEE 53, 1787 (1965).
[CrossRef]

Landry, M. J.

M. J. Landry, Appl. Phys. Letters 9, 303 (1966).
[CrossRef]

Leith, E. N.

Meier, R. W.

Ramberg, E. G.

E. G. Ramberg, RCA Rev. 27, 467 (1966).

Rendeiro, J.

W. E. Kock, J. Rendeiro, Proc. IEEE 53, 1787 (1965).
[CrossRef]

Rogers, G. L.

G. L. Rogers, J. Sci. Instr. 43, 677 (1966).
[CrossRef]

G. L. Rogers, Proc. Roy. Soc. (Edinburgh), A63, 193 (1952).

Rose, H. W.

H. W. Rose, J. Opt. Soc. Am. 56, 542 (1966).

Rotz, F. B.

F. B. Rotz, A. A. Friesem, Appl. Phys. Letters 8, 146 (1966).
[CrossRef]

Sherman, G. C.

Stroke, G. W.

G. W. Stroke, An Introduction to Coherent Optics and Holography (Academic Press Inc., New York, 1966).

Upatnieks, J.

Appl. Opt. (4)

Appl. Phys. Letters (2)

M. J. Landry, Appl. Phys. Letters 9, 303 (1966).
[CrossRef]

F. B. Rotz, A. A. Friesem, Appl. Phys. Letters 8, 146 (1966).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Sci. Instr. (1)

G. L. Rogers, J. Sci. Instr. 43, 677 (1966).
[CrossRef]

Proc. IEEE (1)

W. E. Kock, J. Rendeiro, Proc. IEEE 53, 1787 (1965).
[CrossRef]

Proc. Roy. Soc. (Edinburgh) (1)

G. L. Rogers, Proc. Roy. Soc. (Edinburgh), A63, 193 (1952).

Proc. Roy. Soc. (London) (1)

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).

RCA Rev. (1)

E. G. Ramberg, RCA Rev. 27, 467 (1966).

Other (1)

G. W. Stroke, An Introduction to Coherent Optics and Holography (Academic Press Inc., New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The original hologram is illuminated from the left with the plane wave A exp[i(ktωt)]. The ψ3 and ψ4 wavefronts are responsible for the reconstruction of the virtual and real images (respectively) which are positioned equidistant from H1. The copy plate H2 records the fringe system contained in the emulsion of H1 providing the ψ1, ψ3, and ψ4 wavefronts are not spatially separated. If they are, an additional reference beam is required to record the copy.

Fig. 2
Fig. 2

The approximate setup used in making the large field of view hologram HL used in this study is illustrated. The emulsion, or front side of the photographic plate, was placed facing the objects and the reference beam. The laser beam, used in making the contact copies, entered H1 from the side opposite the emulsion side of the hologram.

Fig. 3
Fig. 3

The vacuum printer used in making the contact copies was mounted on a turntable that allowed the position of the plate assembly to be varied relative to the laser copy beam. H1 was rotated about a horizontal axis, 180° relative to its recorded position when copied. The copy angle α is the angle between the laser copy beam and n ^, the normal to the plate assembly. The negative angles correspond to a counterclockwise rotation relative to the zero position.

Fig. 4
Fig. 4

The reconstructed virtual images (RVI’s) of the copies were photographed with a super wide-angle Speedgraphic F/1.8, 65-mm focal length lens mounted onto a bellows equipped with a plate holder retainer. The photographic angle δ is the angle between the normal to the copy plate and the laser beam when the RVI’s were photographed.

Fig. 5
Fig. 5

The photographs of the RVI’s of the contact copies depict the quality and the angular extent of the RVI’s as a function of copy angle. The top row and the last two photographs on the right in the second row display selective reconstruction, while the remaining copies display the entire original scene.

Fig. 6
Fig. 6

Copy C/37 was studied under rotations about the axes labeled in (a). The vectors n ^ and −n are normal to the plate with - n ^ depicting the emulsion side of the plate. L0 represents the direction in which light was originally scattered from the scene. (b), (c), and (d) show H2 after it has been rotated 180° about the vertical R1, 180° about the horizontal R2, and 180° about the normal R3.

Fig. 7
Fig. 7

Copy C/37 was photographed after rotation R1. The 10° intervals from 10° to −50° display selective reconstruction which is similar to the photographs of the copies shown in Fig. 5.

Fig. 8
Fig. 8

The photographs of the RVI’s of C/37 at the zero position R0 and at rotations R1, R2, and R3 were taken at photographic angle δ = ±37. Photographs −37, R0; 37, R1; −37, R2; and 37, R3 display magnified sections in the RVI’s, i.e., the sticks. This effect is related to the type of image displayed, e.g., pseudoscopic or conjugate image.

Fig. 9
Fig. 9

(a) Copies of H1 were made with H1 illuminated from the same side on which the light from the scene was scattered when H1 was recorded. (b) Copies were also made with H1 rotated 180° relative to the position of H1 in (a).

Fig. 10
Fig. 10

Copies made using the separation method were held firmly a distance Z0 from H1 during their exposure. Copies were made with H1 held in the position as originally recorded (as in Fig. 2) and rotated 180° from this position.

Fig. 11
Fig. 11

The quality of the RVI’s of second generation copies of HL and first generation copies of HS is shown for different separations between the copy plates and HL and HS. The copy number and the separation are labeled below each photograph, i.e., C/37, 2.03 is copy C/37 with a separation of 2.03 mm between H1 and H2. (a) The photographs of the RVI’s of copies of HL depicting the loss of wide angle and general information are illustrated. (b) The photographs of the RVI’s of copies of HS depicting the loss of the general information are shown.

Tables (1)

Tables Icon

Table I Comparison of Emulsions Used to Copy Holograms

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d = λ / sin θ ,
j = 1 N B j ( r ^ ) exp [ i ( k ^ · r ^ j - ω t ) ] r j ,
I 1 ( x , y , z 1 + Δ z ) = | A exp { i [ k ( z 1 + Δ z ) - ω t } + j = 1 N B j ( r ) × exp [ i ( k ^ · r ^ j - ω t ) ] r j | 2 = A A * + ( j = 1 N ) ( j = 1 N ) * + A * exp [ - i k ( z 1 + Δ z ) ] ( j = 1 N ) + A exp [ i k ( z 1 + Δ z ) ] ( j = 1 N ) *
= U 1 + U 2 + U 3 + U 4 ,
T 1 ( x , y ) = C I 1 ( x , y , z 1 + Δ z ) ,
ϕ 2 ( x , y , z 2 + Δ z ) = A exp { i [ k ( z 2 + Δ z ) - ω t ] } T 1 ( x , y ) .
ϕ 2 ( x , y , z 2 + Δ z ) = A C exp { i [ k ( z 2 + Δ z ) - ω t ] } I 1 ( x , y , z 1 + Δ z ) = A C exp { i [ k ( z 2 + Δ z ) - ω t ] } × ( U 1 + U 2 + U 3 + U 3 ) = ( ψ 1 + ψ 2 + ψ 3 + ψ 4 .
I 2 ( x , y , z 2 + Δ z ) = ϕ 2 ( x , y , z 2 + Δ z ) 2 = ψ 1 2 + ψ 2 2 + ψ 3 2 + ψ 4 2 + ψ 1 ψ 2 * + ψ 1 ψ 3 * _ + ψ 1 ψ 4 * _ + ψ 2 ψ 1 * + ψ 2 ψ 3 * + ψ 2 ψ 4 * + ψ 3 ψ 1 * _ + ψ 3 ψ 2 * + ψ 3 ψ 4 * + ψ 4 ψ 1 * _ + ψ 4 ψ 2 * + ψ 4 ψ 3 * .
T 2 ( x , y ) = C I 2 ( x , y , z 2 + Δ z ) .
ϕ 3 ( x , y , z 2 + t ) = A exp { i [ k ( z 2 + t ) - ω t ] } T 2 ( x , y ) = A C exp { i [ k ( z 2 + t ) - ω t ] } I 2 ( x , y , z 2 + Δ z ) ,
ψ 1 ψ 2 , ψ 3 , ψ 4 .

Metrics