Abstract

The desirability of using confocal cavities in scanning interferometers is discussed and a method for fabricating such cavities is described. This method makes use of the fact that in a confocal cavity the minimum spot size, and hence the extent of any combination of cavity modes, is stationary with respect to small changes in the cavity length. A method for reducing wedge in the cavity to small values is also presented. Tolerances are discussed and performance figures for two interferometers produced this way are given.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Connes, Rev. Opt. 35, 39 (1956).
  2. G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).
  3. R. L. Fork, D. R. Herriott, H. Kogelnik, Appl. Opt. 3, 1471 (1964).
    [Crossref]
  4. H. Kogelnik, Bell System Tech. J. 43, 334 (1964).
  5. H. Kogelnik, Bell System Tech. J. 44, 455 (1965).
  6. P. Connes, J. Phys. Radium 19, 262 (1958).
    [Crossref]
  7. F. M. Phelps, J. Opt. Soc. Am. 55, 293 (1965).
    [Crossref]
  8. J. R. Johnson, J. Opt. Soc. Am. 56, 1447A (1966).

1966 (1)

J. R. Johnson, J. Opt. Soc. Am. 56, 1447A (1966).

1965 (2)

F. M. Phelps, J. Opt. Soc. Am. 55, 293 (1965).
[Crossref]

H. Kogelnik, Bell System Tech. J. 44, 455 (1965).

1964 (2)

R. L. Fork, D. R. Herriott, H. Kogelnik, Appl. Opt. 3, 1471 (1964).
[Crossref]

H. Kogelnik, Bell System Tech. J. 43, 334 (1964).

1961 (1)

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).

1958 (1)

P. Connes, J. Phys. Radium 19, 262 (1958).
[Crossref]

1956 (1)

P. Connes, Rev. Opt. 35, 39 (1956).

Boyd, G. D.

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).

Connes, P.

P. Connes, J. Phys. Radium 19, 262 (1958).
[Crossref]

P. Connes, Rev. Opt. 35, 39 (1956).

Fork, R. L.

Gordon, J. P.

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).

Herriott, D. R.

Johnson, J. R.

J. R. Johnson, J. Opt. Soc. Am. 56, 1447A (1966).

Kogelnik, H.

H. Kogelnik, Bell System Tech. J. 44, 455 (1965).

R. L. Fork, D. R. Herriott, H. Kogelnik, Appl. Opt. 3, 1471 (1964).
[Crossref]

H. Kogelnik, Bell System Tech. J. 43, 334 (1964).

Phelps, F. M.

Appl. Opt. (1)

Bell System Tech. J. (3)

H. Kogelnik, Bell System Tech. J. 43, 334 (1964).

H. Kogelnik, Bell System Tech. J. 44, 455 (1965).

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 40, 489 (1961).

J. Opt. Soc. Am. (2)

F. M. Phelps, J. Opt. Soc. Am. 55, 293 (1965).
[Crossref]

J. R. Johnson, J. Opt. Soc. Am. 56, 1447A (1966).

J. Phys. Radium (1)

P. Connes, J. Phys. Radium 19, 262 (1958).
[Crossref]

Rev. Opt. (1)

P. Connes, Rev. Opt. 35, 39 (1956).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Minimum spot size w0 as a function of mirror separation D and mirror radius of curvature R in a symmetric cavity.

Fig. 2
Fig. 2

Origin of two-beam interference fringes in a confocal cavity when one mirror is tilted.

Fig. 3
Fig. 3

Schematic drawing of the confocal etalon.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D = R ( 1 + ) ,
ν m n q = [ q + ( m + n + 1 ) ( 1 2 + / π ) ] ( c / 2 D ) .
m + n M
π / N ( M + 1 ) ,
( D - R ) / R < 8 × 10 - 4 .
( 2 π W 0 2 / λ ) 2 = 2 D R - D 2 ,
| D - R R | < 12.5 μ 15 cm = 0.8 × 10 - 4 ,

Metrics