Abstract

Methods are described in this paper by which the concentration of electrons in a plasma and the changes in the gas density can be measured by superposing spectrally scanned interference patterns.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Rozhdestvenskii, Studies on Anomalous Dispersion in Metallic Vapors (U.S.S.R. Academy of Sciences Press, Moscow, 1951).
  2. R. Landenburg, Ed., Physical Measurements in Gas Dynamics and in Combustion (Foreign Literature Press, Moscow, 1957), Part 1.
  3. L. A. Artsimovich, Usp. Fiz. Nauk 56, 454 (1958).

1958 (1)

L. A. Artsimovich, Usp. Fiz. Nauk 56, 454 (1958).

Artsimovich, L. A.

L. A. Artsimovich, Usp. Fiz. Nauk 56, 454 (1958).

Rozhdestvenskii, D. S.

D. S. Rozhdestvenskii, Studies on Anomalous Dispersion in Metallic Vapors (U.S.S.R. Academy of Sciences Press, Moscow, 1951).

Usp. Fiz. Nauk (1)

L. A. Artsimovich, Usp. Fiz. Nauk 56, 454 (1958).

Other (2)

D. S. Rozhdestvenskii, Studies on Anomalous Dispersion in Metallic Vapors (U.S.S.R. Academy of Sciences Press, Moscow, 1951).

R. Landenburg, Ed., Physical Measurements in Gas Dynamics and in Combustion (Foreign Literature Press, Moscow, 1957), Part 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Spectrograms obtained by superimposing two interference patterns: (a) unshifted patterns superposed; (b) for wavelengths corresponding to the central part of the pattern, shift equal to ½ fringe; (c) shift of several fringes; (d) patterns shifted more than 100 fringes.

Fig. 2
Fig. 2

Diagram of the origin of the fringes observed in Fig. 1(b): (1) — — — fringes of the first pattern; (2) — · — · — fringes the second pattern; and (3) —— observed fringes.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

n - 1 = A ρ .
k = L A Δ ρ / λ ,
L A Δ ρ = [ ( 2 k 1 + 1 ) / 2 ] λ 1 ; L A Δ ρ = [ ( 2 k 2 + 1 ) / 2 ] λ 2 ; k 2 = k 1 + i .
n - 1 = - N e e 2 2 π m c 2 λ 2 .
L N e e 2 2 π m c 2 λ 1 = 2 k 1 + 1 2 ; L N e e 2 2 π m c 2 λ 2 = 2 k 2 + 1 2 ; k 2 = k 1 + i .
L A Δ ρ + L N e e 2 2 π m c 2 λ 1 2 = 2 k 1 + 1 2 λ 1 ; L A Δ ρ + L N e e 2 2 π m c 2 λ 2 2 = 2 k 2 + 1 2 λ 2 ; L A Δ ρ - L N e e 2 2 π m c 2 λ 3 2 = 2 k 3 + 1 2 λ 3 ; k 2 = k 1 + i 1 ;             k 3 = k 1 + i 2 .
L 0 A 0 Δ ρ 0 / λ 0 k = ( 2 k + 1 ) / 2.
L 0 A 0 Δ ρ ± A Δ ρ x λ k = 2 k + 1 2 .
λ 0 k - λ k = ± [ 2 L A / ( 2 k + 1 ) ] Δ ρ x .
λ 0 k - λ k = λ [ ( 2 k ) / ( 2 k + 1 ) ]
L N e e 2 2 π m c 2 λ = k .
L 0 A 0 Δ ρ 0 λ k - L N e e 2 2 π m c 2 λ k = 2 k + 1 2 .
λ 0 k - λ k = 2 2 k + 1 ( N e e 2 2 π m c 2 ) λ k 2 .
λ 02 - λ 2 = 2 k ( 2 k + 1 ) λ λ 2 2 .
2 k + 1 2 λ 0 k λ k ± L A Δ ρ x λ k - L N e e 2 2 π m c 2 λ k = 2 k + 1 2 .
2 k 1 + 1 2 ( λ 0 k 1 - λ k 1 ) = L A Δ ρ x + L N e e 2 2 π m c 2 λ k 1 2 ; 2 k 2 + 1 2 ( λ 0 k 2 - λ k 2 ) = L A Δ ρ x + L N e e 2 2 π m c 2 λ k 2 2 .
( 2 k 1 + 1 ) ( λ 0 k 1 - λ k ) - ( 2 k 2 + 1 ) ( λ 0 k 2 - λ k 2 ) = L N e e 2 π m c 2 ( λ k 1 2 - λ k 2 2 ) .
n - 1 = e 2 N i f i k 2 π m c 2 · λ i k 2 λ 2 λ 2 - λ i k 2 .
k * k = e 2 N i f i k L 2 π m c 2             λ i k 3 λ λ 2 - λ i k 2 .
k * k = N i f i k N e · λ i k 2 λ 2 - λ i k 2 .
k * k 2.5 N i f i k N e

Metrics