Abstract

Absorption spectra of solar radiation in a narrow region about 3800 cm−1, including several intense lines of the rotational structure of the ν3 band of water vapor, have been measured at altitudes up to 25.3 km with small angular heights of the sun. The apparatus was calibrated with respect to an artificial atmosphere, using a multipass cell. The distribution of water vapor in altitudes 11–25.3 km was determined from the absorption in the 3816.07 cm line. The mixing ratio decreases from 12 × 10−6 g/g at 11 km to 2.5 × 10−6 g/g at 17 kin, and then remains constant. At heights > 25.3 km the average mixing ratio is 4 × 10−6 g/g. These results correspond to the dry stratosphere model. Analysis of the experimental conditions indicates that a small influence by water vapor carried along upon the results of the measurements was achieved. The water mass function of the atmosphere was determined for small solar angles and large instrument heights, and a variation in the moisture of the stratosphere horizontally at great distances from the point of measurement was established.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Neporent, M. S. Kiseleva, Symposium on Radiation Processes in the Atmosphere, Leningrad, 5–12 Aug. 1964. Abstracts (IUGG Monographie No. 28, Aug.1965, Paris, France), p. 15; M. S. Kiseleva, B. S. Neporent, Opt. i Spektroskopiya 19, 923 (1965); Opt. Spectry, 19, 513 (1965).
  2. G. I. Golyshev, B. A. Meston, Principles of Aeronautics and Aviation (Leningrad, 1960), p. 80.
  3. J. Houghton, Quart. J. Roy. Meteorol. Soc. 80, 332 (1963).
    [CrossRef]
  4. D. M. Gates, R. F. Calfee, D. M. Hensen, W. S. Benedict, Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 μ. Natl. Bur. Std. Monograph 71, (1964).
  5. B. S. Neporent, M. S. Kiseleva, Opt. i Spektroskopiya 16, 803 (1964); Opt. Spectry. 16, 437 (1964).
  6. M. Gutnick, Quart. J. Roy. Meteorol. Soc. 88, 192 (1962).
  7. E. J. Williamson, Mem. Soc. Roy. Sci. Liège 9, 327 (1965).
  8. D. G. Murcray, F. H. Murcray, W. I. Williams, Appl. Opt. 6, 191 (1967).
    [CrossRef] [PubMed]
  9. R. Zander, J. Geophys. Res. 71, 3775 (1966).
    [CrossRef]
  10. P. J. Wyatt, V. R. Stull, G. N. Plass, Appl. Opt. 3, 229 (1964).
    [CrossRef]
  11. K. Ya. Kondratiev, G. A. Nikolsky, I. Ya. Badinov, S. D. Andreev, Appl. Opt. 6, 197 (1967).
    [CrossRef] [PubMed]

1967

1966

R. Zander, J. Geophys. Res. 71, 3775 (1966).
[CrossRef]

1965

E. J. Williamson, Mem. Soc. Roy. Sci. Liège 9, 327 (1965).

1964

D. M. Gates, R. F. Calfee, D. M. Hensen, W. S. Benedict, Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 μ. Natl. Bur. Std. Monograph 71, (1964).

B. S. Neporent, M. S. Kiseleva, Opt. i Spektroskopiya 16, 803 (1964); Opt. Spectry. 16, 437 (1964).

P. J. Wyatt, V. R. Stull, G. N. Plass, Appl. Opt. 3, 229 (1964).
[CrossRef]

1963

J. Houghton, Quart. J. Roy. Meteorol. Soc. 80, 332 (1963).
[CrossRef]

1962

M. Gutnick, Quart. J. Roy. Meteorol. Soc. 88, 192 (1962).

Andreev, S. D.

Badinov, I. Ya.

Benedict, W. S.

D. M. Gates, R. F. Calfee, D. M. Hensen, W. S. Benedict, Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 μ. Natl. Bur. Std. Monograph 71, (1964).

Calfee, R. F.

D. M. Gates, R. F. Calfee, D. M. Hensen, W. S. Benedict, Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 μ. Natl. Bur. Std. Monograph 71, (1964).

Gates, D. M.

D. M. Gates, R. F. Calfee, D. M. Hensen, W. S. Benedict, Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 μ. Natl. Bur. Std. Monograph 71, (1964).

Golyshev, G. I.

G. I. Golyshev, B. A. Meston, Principles of Aeronautics and Aviation (Leningrad, 1960), p. 80.

Gutnick, M.

M. Gutnick, Quart. J. Roy. Meteorol. Soc. 88, 192 (1962).

Hensen, D. M.

D. M. Gates, R. F. Calfee, D. M. Hensen, W. S. Benedict, Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 μ. Natl. Bur. Std. Monograph 71, (1964).

Houghton, J.

J. Houghton, Quart. J. Roy. Meteorol. Soc. 80, 332 (1963).
[CrossRef]

Kiseleva, M. S.

B. S. Neporent, M. S. Kiseleva, Opt. i Spektroskopiya 16, 803 (1964); Opt. Spectry. 16, 437 (1964).

B. S. Neporent, M. S. Kiseleva, Symposium on Radiation Processes in the Atmosphere, Leningrad, 5–12 Aug. 1964. Abstracts (IUGG Monographie No. 28, Aug.1965, Paris, France), p. 15; M. S. Kiseleva, B. S. Neporent, Opt. i Spektroskopiya 19, 923 (1965); Opt. Spectry, 19, 513 (1965).

Kondratiev, K. Ya.

Meston, B. A.

G. I. Golyshev, B. A. Meston, Principles of Aeronautics and Aviation (Leningrad, 1960), p. 80.

Murcray, D. G.

Murcray, F. H.

Neporent, B. S.

B. S. Neporent, M. S. Kiseleva, Opt. i Spektroskopiya 16, 803 (1964); Opt. Spectry. 16, 437 (1964).

B. S. Neporent, M. S. Kiseleva, Symposium on Radiation Processes in the Atmosphere, Leningrad, 5–12 Aug. 1964. Abstracts (IUGG Monographie No. 28, Aug.1965, Paris, France), p. 15; M. S. Kiseleva, B. S. Neporent, Opt. i Spektroskopiya 19, 923 (1965); Opt. Spectry, 19, 513 (1965).

Nikolsky, G. A.

Plass, G. N.

Stull, V. R.

Williams, W. I.

Williamson, E. J.

E. J. Williamson, Mem. Soc. Roy. Sci. Liège 9, 327 (1965).

Wyatt, P. J.

Zander, R.

R. Zander, J. Geophys. Res. 71, 3775 (1966).
[CrossRef]

Appl. Opt.

J. Geophys. Res.

R. Zander, J. Geophys. Res. 71, 3775 (1966).
[CrossRef]

Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 µ

D. M. Gates, R. F. Calfee, D. M. Hensen, W. S. Benedict, Line Parameters and Computed Spectra for Water Vapor Bands at 2.7 μ. Natl. Bur. Std. Monograph 71, (1964).

Mem. Soc. Roy. Sci. Liège

E. J. Williamson, Mem. Soc. Roy. Sci. Liège 9, 327 (1965).

Opt. i Spektroskopiya

B. S. Neporent, M. S. Kiseleva, Opt. i Spektroskopiya 16, 803 (1964); Opt. Spectry. 16, 437 (1964).

Quart. J. Roy. Meteorol. Soc.

M. Gutnick, Quart. J. Roy. Meteorol. Soc. 88, 192 (1962).

J. Houghton, Quart. J. Roy. Meteorol. Soc. 80, 332 (1963).
[CrossRef]

Other

B. S. Neporent, M. S. Kiseleva, Symposium on Radiation Processes in the Atmosphere, Leningrad, 5–12 Aug. 1964. Abstracts (IUGG Monographie No. 28, Aug.1965, Paris, France), p. 15; M. S. Kiseleva, B. S. Neporent, Opt. i Spektroskopiya 19, 923 (1965); Opt. Spectry, 19, 513 (1965).

G. I. Golyshev, B. A. Meston, Principles of Aeronautics and Aviation (Leningrad, 1960), p. 80.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sample tracing of the solar spectrum in the region 3795–3842 cm−1 (8 August 1966, Rulsk). Altitude of instrument h = 22 km, solar elevation Z = −1° 15′. The curves represent the spectra in the first and third channels of the amplifier, the straight line, time markers.

Fig. 2
Fig. 2

Conventional reduced width à cm−1 for the 3816.07 line as a function of effective quantity of water vapor (W′)½. W′ = μ of precipitated water per mm Hg of nitrogen. Each type of point corresponds to a given water vapor pressure pW, combined with different amounts of nitrogen pN and path lengths l.

Fig. 3
Fig. 3

Some of the solar spectra obtained during ascent of the instrument (8 August 1966, Rylsk). Starting at the bottom;

Fig. 4
Fig. 4

Some of the solar spectra obtained during descent (8 August 1966, Rylsk). Starting from the top:

Fig. 5
Fig. 5

Conventional reduced width à cm−1 as a function of instrument height in the atmosphere (8 August 1966, Rylsk). Curve I, ascent; curve II, descent; curve III, absorption inside the instrument according to the standard source.

Fig. 6
Fig. 6

Concentration (μ precipitated water/km) of water vapor in the atmosphere. Curve I, calculated from the results of Fig. 5 (8 August 1966, Rylsk). Curve II, measured from unresolved spectra (18 September 1966, Rylsk), Curve III, measured from unresolved spectra (27 October 1961, Tashkent), according to Ref. 1. Curves a, b, c show saturation of water vapor, Gutnick’s distribution,6 and Houghton-Williamson’s distribution,3,7 respectively.

Fig. 7
Fig. 7

The function m transforming from the slant paths in the atmosphere to vertical, as a function of solar elevation Z. Curve I, see Z; curve II, Bemporad’s function ma, for air mass; curve III, the mw, function for water mass.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A = ν 1 ν 2 ( I I 0 ) ν d ν ,
W = W P N = W P a ,

Metrics