Abstract

Spicer’s absorption diffusion model is extended to analyze Schottky photodiodes which possess special characteristics. The model describes the generation of minority carriers by optical absorption in the bulk of a semiconductor material. The magnitude and shape of the spectral response for a minimally depleted device is found to depend on the rate of variation of the absorption coefficient with wavelength on the thickness of the absorbing region T and on the minority carrier’s diffusion length l. Narrow spectral response can exist in this device only in the wavelength region wherein the absorption coefficient α is rapidly changing. A combination of high quantum efficiency with sharp tuning is found to exist.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Shive, Semiconductor Devices (D. Van Nostrand Co., Inc., Princeton, New Jersey, 1959), p. 149.
  2. S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964), p. 272.
  3. Ref. 2, p. 273.
  4. Ref. 2, p. 272.
  5. R. A. Smith, Semiconductors (Cambridge University Press, New York, 1959), p. 309.
  6. W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
    [CrossRef]
  7. J. R. Sizelove, J. Love, Appl. Opt. 5, 1419 (1966).
    [CrossRef] [PubMed]
  8. M. Neuberger, Gallium Arsenside Data Sheets, Electronic Properties Information Center, Hughes Aircraft Co.April1965, p. 7.
  9. P. H. Wendland, Multiple Reflective Laser Detector Diode, Contract AF33(615)-3591 Interim Engineering Report. No. 4, p. 10.

1966 (1)

1963 (1)

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
[CrossRef]

Love, J.

Neuberger, M.

M. Neuberger, Gallium Arsenside Data Sheets, Electronic Properties Information Center, Hughes Aircraft Co.April1965, p. 7.

Ryvkin, S. M.

S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964), p. 272.

Shive, J. N.

J. N. Shive, Semiconductor Devices (D. Van Nostrand Co., Inc., Princeton, New Jersey, 1959), p. 149.

Sizelove, J. R.

Smith, R. A.

R. A. Smith, Semiconductors (Cambridge University Press, New York, 1959), p. 309.

Spicer, W. E.

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
[CrossRef]

Wendland, P. H.

P. H. Wendland, Multiple Reflective Laser Detector Diode, Contract AF33(615)-3591 Interim Engineering Report. No. 4, p. 10.

Wooten, F.

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
[CrossRef]

Appl. Opt. (1)

Proc. IEEE (1)

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1119 (1963).
[CrossRef]

Other (7)

M. Neuberger, Gallium Arsenside Data Sheets, Electronic Properties Information Center, Hughes Aircraft Co.April1965, p. 7.

P. H. Wendland, Multiple Reflective Laser Detector Diode, Contract AF33(615)-3591 Interim Engineering Report. No. 4, p. 10.

J. N. Shive, Semiconductor Devices (D. Van Nostrand Co., Inc., Princeton, New Jersey, 1959), p. 149.

S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964), p. 272.

Ref. 2, p. 273.

Ref. 2, p. 272.

R. A. Smith, Semiconductors (Cambridge University Press, New York, 1959), p. 309.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photodiode geometry.

Fig. 2
Fig. 2

Reverse bias voltage across photodiode.

Fig. 3
Fig. 3

Photocurrent measured at rectifying contact.

Fig. 4
Fig. 4

Absorption coefficients for N-type pure single crystal GaAs (n ~ 3 × 1016/cm3).

Fig. 5
Fig. 5

Thickness shifts spectral response.

Fig. 6
Fig. 6

Diffusion length enhances spectral response.

Fig. 7
Fig. 7

Optimum response curves.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

l = 2 l D 2 / [ ( l E 2 + 4 l D 2 ) 1 2 - l E ] ,
l D = [ ( k T / q e ) μ h τ 0 ] 1 2 ,
l E = μ h E τ 0 ,
Y = 0 T α ( I / I 0 ) exp [ - ( T - x ) / l ] d x ,
I / I 0 = { e - α x + R e - α T exp [ - α ( T - x ) ] + R 0 R 2 exp [ - 2 α T ] e - α x + R 0 R 2 exp [ - 3 α T ] exp [ - α [ T - x ) ] + R 0 R 2 exp [ - 4 α T ] exp - α x + }
I I 0 = { e - α x + R exp [ - α ( 2 T - x ) ] 1 - R 0 R exp [ - 2 α T ] } .
Y = ( P / P - 1 ) ( e - τ - e - P τ ) + ( P R / P + 1 ) e - P τ ( 1 - exp [ - ( P + 1 ) τ ] ) 1 - R 0 R exp [ - 2 P τ ] ,

Metrics