Abstract

When a hologram is desired from an object which does not exist physically but is known in mathematical terms, one can compute the hologram. An automatic plotter will make a drawing at a large scale which is then reduced photographically. Since the drawing can contain only black and white areas, we have developed a theory for binary holograms. They are equivalent in terms of image reconstruction with ordinary holograms. This has been proven theoretically and verified experimentally.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Brown, A. W. Lohmann, Appl. Opt. 5, 967 (1966).
    [CrossRef] [PubMed]
  2. D. Hauk, A. Lohmann, Optik 15, 275 (1958).
  3. C. A. Taylor, H. Lipson, Optical Transforms (Bell, London, 1964); G. Harburn, K. Walkley, C. A. Taylor, Nature 205, 1096 (1965).
    [CrossRef]
  4. A. Kozma, D. L. Kelly, Appl. Opt. 4, 37 (1965).
    [CrossRef]
  5. J. P. Waters, Appl. Phys. Letters 9, 405 (1957).
    [CrossRef]
  6. M. Marquet, J. Tsujiuchi, Opt. Acta 8, 267 (1961).
    [CrossRef]
  7. A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 537A (1966).
  8. J. W. Cooley, J. W. Tukey, Math. Comp. 19, 297 (1965); IBM Share Libr. HARM 3425.
    [CrossRef]
  9. E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 54, 1295 (1964).
    [CrossRef]
  10. B. R. Brown, A. W. Lohmann, D. P. Paris, Opt. Acta 13, 377 (1966).
  11. A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 1413 A (1966).
  12. A. W. Lohmann, D. P. Paris, IEEE J. Quantum Electron. QE-2, LXV (1966).

1966 (5)

B. R. Brown, A. W. Lohmann, Appl. Opt. 5, 967 (1966).
[CrossRef] [PubMed]

A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 537A (1966).

B. R. Brown, A. W. Lohmann, D. P. Paris, Opt. Acta 13, 377 (1966).

A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 1413 A (1966).

A. W. Lohmann, D. P. Paris, IEEE J. Quantum Electron. QE-2, LXV (1966).

1965 (2)

J. W. Cooley, J. W. Tukey, Math. Comp. 19, 297 (1965); IBM Share Libr. HARM 3425.
[CrossRef]

A. Kozma, D. L. Kelly, Appl. Opt. 4, 37 (1965).
[CrossRef]

1964 (1)

1961 (1)

M. Marquet, J. Tsujiuchi, Opt. Acta 8, 267 (1961).
[CrossRef]

1958 (1)

D. Hauk, A. Lohmann, Optik 15, 275 (1958).

1957 (1)

J. P. Waters, Appl. Phys. Letters 9, 405 (1957).
[CrossRef]

Brown, B. R.

B. R. Brown, A. W. Lohmann, D. P. Paris, Opt. Acta 13, 377 (1966).

B. R. Brown, A. W. Lohmann, Appl. Opt. 5, 967 (1966).
[CrossRef] [PubMed]

Cooley, J. W.

J. W. Cooley, J. W. Tukey, Math. Comp. 19, 297 (1965); IBM Share Libr. HARM 3425.
[CrossRef]

Hauk, D.

D. Hauk, A. Lohmann, Optik 15, 275 (1958).

Kelly, D. L.

A. Kozma, D. L. Kelly, Appl. Opt. 4, 37 (1965).
[CrossRef]

Kozma, A.

A. Kozma, D. L. Kelly, Appl. Opt. 4, 37 (1965).
[CrossRef]

Leith, E. N.

Lipson, H.

C. A. Taylor, H. Lipson, Optical Transforms (Bell, London, 1964); G. Harburn, K. Walkley, C. A. Taylor, Nature 205, 1096 (1965).
[CrossRef]

Lohmann, A.

D. Hauk, A. Lohmann, Optik 15, 275 (1958).

Lohmann, A. W.

A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 537A (1966).

B. R. Brown, A. W. Lohmann, D. P. Paris, Opt. Acta 13, 377 (1966).

A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 1413 A (1966).

B. R. Brown, A. W. Lohmann, Appl. Opt. 5, 967 (1966).
[CrossRef] [PubMed]

A. W. Lohmann, D. P. Paris, IEEE J. Quantum Electron. QE-2, LXV (1966).

Marquet, M.

M. Marquet, J. Tsujiuchi, Opt. Acta 8, 267 (1961).
[CrossRef]

Paris, D. P.

A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 1413 A (1966).

B. R. Brown, A. W. Lohmann, D. P. Paris, Opt. Acta 13, 377 (1966).

A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 537A (1966).

A. W. Lohmann, D. P. Paris, IEEE J. Quantum Electron. QE-2, LXV (1966).

Taylor, C. A.

C. A. Taylor, H. Lipson, Optical Transforms (Bell, London, 1964); G. Harburn, K. Walkley, C. A. Taylor, Nature 205, 1096 (1965).
[CrossRef]

Tsujiuchi, J.

M. Marquet, J. Tsujiuchi, Opt. Acta 8, 267 (1961).
[CrossRef]

Tukey, J. W.

J. W. Cooley, J. W. Tukey, Math. Comp. 19, 297 (1965); IBM Share Libr. HARM 3425.
[CrossRef]

Upatnieks, J.

Waters, J. P.

J. P. Waters, Appl. Phys. Letters 9, 405 (1957).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Letters (1)

J. P. Waters, Appl. Phys. Letters 9, 405 (1957).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. W. Lohmann, D. P. Paris, IEEE J. Quantum Electron. QE-2, LXV (1966).

J. Opt. Soc. Am. (3)

A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 1413 A (1966).

A. W. Lohmann, D. P. Paris, J. Opt. Soc. Am. 56, 537A (1966).

E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 54, 1295 (1964).
[CrossRef]

Math. Comp. (1)

J. W. Cooley, J. W. Tukey, Math. Comp. 19, 297 (1965); IBM Share Libr. HARM 3425.
[CrossRef]

Opt. Acta (2)

B. R. Brown, A. W. Lohmann, D. P. Paris, Opt. Acta 13, 377 (1966).

M. Marquet, J. Tsujiuchi, Opt. Acta 8, 267 (1961).
[CrossRef]

Optik (1)

D. Hauk, A. Lohmann, Optik 15, 275 (1958).

Other (1)

C. A. Taylor, H. Lipson, Optical Transforms (Bell, London, 1964); G. Harburn, K. Walkley, C. A. Taylor, Nature 205, 1096 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup for the construction of an image IMG from a binary hologram HOLO, illuminated by a point source x0 in SOU.

Fig. 2
Fig. 2

Structure of the (n,m) cell in the binary hologram. The rectangular opening has a width cδν, a height Wnmδν, and it is displaced from the center of the cell at (nδν,mδν) by Pnmδν.

Fig. 3
Fig. 3

Binary Fraunhofer holography: (a) the hologram; (b) the image.

Fig. 4
Fig. 4

Simulation of a groundglass, i.e., object with random phase: (a) the hologram; (b) the image.

Fig. 5
Fig. 5

A holographic image with defects owing to zero-order approximation in the calculation.

Fig. 6
Fig. 6

Images from binary holograms of different orders: (a) M = 1; (b) M = 3.

Equations (65)

Equations on this page are rendered with MathJax. Learn more.

u ˜ ( ν x , ν y ) = u ( x , y ) E ( - x ν x - y ν y ) d x d y .
const u ˜ ( ν x , ν y ) = H ( ν x , ν y ) E ( x 0 ν x ) .
u ( x , y ) = 0 outside of x Δ x / 2 ; y Δ y / 2 ; u ˜ ( ν x , ν y ) 0 outside of ν x Δ ν / 2 ; v y Δ ν ν 2.
h ( x , y ) = rect ( x / Δ x ) rect ( y / Δ x ) H ( ν x , ν y ) E [ ( x + x 0 ) ν x + y ν y ] d ν x d ν ; .
rect ( z ) = { 1 ; in z 1 2 0 ; otherwise
h ( x , y ) = const u ( x , y ) .
N 2 = ( Δ x Δ y ) / ( δ x δ y ) = ( Δ x / δ x ) 2 = ( Δ x Δ ν ) 2 = S W .
( Δ ν / δ ν ) 2 ( Δ x / δ x ) 2 = ( Δ x Δ ν ) 2 ;     δ ν 1 / Δ x .
u ˜ ( ν x , ν y ) = Σ Σ ( n , m ) u ˜ ( n / Δ x , m / Δ x ) × sinc ( ν x Δ x - n ) sinc ( ν y Δ x - m ) .
ν x - ( n + P n m ) δ ν c δ ν / 2 ; ν y - m δ ν W n m δ ν / 2.
( m - 1 2 ) δ ν ( m + 1 2 ) δ ν H ( ν x , ν y ) d ν y = H m ( ν x ) ; H m [ ( n + P n m ) δ ν + μ ] = H m [ ( n + P n m ) δ ν - μ ] ,
H ( ν x , ν y ) = Σ Σ ( n , m ) rect [ ν x - ( n + P n m ) δ ν c δ ν ] rect [ ν y - m δ ν W n m δ ν ] .
H ( ν x , ν y ) E [ ( x + x 0 ) ν x + y ν y ] d ν x d ν y = c ( δ ν ) 2 sinc [ c δ ν ( x + x 0 ) ] Σ Σ ( n , m ) W n m sinc ( y W n m δ ν ) E { δ ν [ ( x + x 0 ) ( n + P n m ) + y m ] } .
rect ( x / Δ x ) rect ( y / Δ x ) H E d ν x d ν y = h ( x , y ) ; h ( x , y ) = const u ( x , y ) .
u ( x , y ) = u ˜ ( ν x , ν y ) E ( x ν x + y ν y ) d ν x d ν y = rect ( x / Δ x ) rect ( y / Δ x ) ( n , m ) u ˜ ( n δ ν ) , m δ ν ) E [ δ ν ( x n + y m ) ] .
c ( δ ν ) 2 W n m E [ x 0 δ ν ( n + P n m ) ] const u ˜ ( n δ ν , m δ ν ) ; const u ˜ ( n δ ν , m δ ν ) = c ( δ ν ) 2 A n m E ( φ n m / 2 π ) ; W n m A n m ; P n m + n φ n m / 2 π x 0 δ ν .
P n m φ n m / 2 π M .
E [ x 0 δ ν ( n + P n m ) ] = E ( M P n m ) ; φ n m = 2 π M P n m ; φ ¯ = 2 π M P ¯ .
( a ) sinc [ c δ ν ( x + x 0 ) ] const , in x Δ x / 2 ; ( b ) sinc ( y W n m δ ν ) 1 in y Δ x / 2 ; ( c ) E ( x P n m δ ν ) 1 in x Δ x / 2.
φ π ; φ = 2 π M P ; P 1 2 M .
sinc [ c δ ν ( x + x 0 ) ] const , in x Δ x / 2.
sinc ( y W δ ν ) 1 ,
E ( x P n m δ ν ) 1 x in x Δ x / 2.
u ( x , y ) 0 only in x , y ξ Δ x / 2 ; ξ 1.
u ( x , y ) = v ( x , y ) sinc [ c δ ν ( x + x 0 ) ] .
h ( x , y ) / sinc [ c δ ν ( x + x 0 ) ] = const v ( x , y )
v ( x , y ) = u ( x , y ) / sinc [ c δ ν ( x + x 0 ) ] = rect ( x / Δ x ) rect ( y / Δ x ) ( n , m ) v ˜ n m E [ δ ν ( x n + y m ) ] ;
v ˜ n m = ( 1 / Δ x ) 2 u / sinc E [ - δ ν ( x n + y m ) ] d x d y ;
h ( x , y ) / sinc [ c δ ν ( x + x 0 ) ] = rect ( x / Δ x ) rect ( y / Δ x ) c ( δ ν ) 2 Σ Σ ( n , m ) W n m sinc ( y W n m δ ν ) E [ M P n m + ( x n + y m ) δ ν + x P n m δ ν ] .
const v ˜ j k = c ( δ ν / Δ x ) 2 ( n , m ) W n m × ( - Δ x / 2 ) ( + Δ x / 2 ) sinc ( y W n m δ ν ) E [ ] d x d y ;
= M P n m + ( n - j ) x δ ν + ( m - k ) y δ ν + x P n m δ ν .
const v ˜ j k = c ( δ ν ) 2 ( m , n ) W n m E ( M P n m ) σ ( n , j ; m , k ) ;
σ ( n , j ; m , k ) = σ x ( n , j ; m ) σ y ( m , k ; n ) ;
σ x = ( 1 / Δ x ) - Δ x / 2 + Δ x / 2 E [ x δ ν ( n - j + P n m ) ] d x = sinc ( n - j + P n m ) ;
σ y = ( 1 / Δ x ) - Δ x / 2 + Δ x / 2 sinc ( y W n m δ ν ) E [ y δ ν ( m - k ) ] d y = [ Si ( m - k + W n m / 2 ) - Si ( m - k - W n m / 2 ) / W n m .
Si ( z ) = 0 z sinc ( z ) d z .
sinc ( y W δ ν ) = ( 1 / W δ ν ) - + rect ( μ / W δ ν ) E ( μ y ) d μ .
const v ˜ j k / c ( δ ν ) 2 = A j k E ( φ j k / 2 π ) ;
( n , m ) W n m E ( M P n m ) σ ( n , j ; m , k ) = W j k E ( M P j k ) σ ( j , j ; k , k ) + R j k ( W n m , P n m ) .
A j k E ( φ j k / 2 π ) = W j k E ( M P j k ) σ ( j , j ; k , k ) + R j k ;
σ ( j , j ; k , k ) = sinc ( P j k ) Si ( W j k / 2 ) / ( W j k / 2 ) .
R j k = 0 ; σ ( j , j ; k , k ) = 1.
A j k E ( φ j k / 2 π ) = W j k ( 0 ) E ( M P j k ( 0 ) ) ; W j k ( 0 ) = A j k ; P j k ( 0 ) = φ j k / 2 π M .
A j k E ( φ j k / 2 π ) = W j k ( 1 ) E ( M P j k ( 1 ) ) σ ( W j k ( 0 ) , P j k ( 0 ) ) ;
P j k ( 1 ) = φ j k / 2 π M = P j k ( 0 ) ;
W j k ( 1 ) = A j k / σ ( W j k ( 0 ) , P j k ( 0 ) ) = W j k ( 0 ) / σ ( W j k ( 0 ) , P j k ( 0 ) ) .
A j k E ( φ j k / 2 π ) = W j k ( 2 ) E ( M P j k ( 2 ) ) σ j k ( W j k ( 1 ) , P j k ( 1 ) ) + R j k ( W n m ( 1 ) , P n m ( 1 ) ) ;
A j k E ( φ j k / 2 π ) - R j k ( W n m ( 1 ) , P n m ( 1 ) ) = B j k E ( β j k / 2 π ) ;
W j k ( 2 ) = B j k / σ j k ( W j k ( 1 ) , P j k ( 1 ) ) ; P j k ( 2 ) = β j k / 2 π M .
σ ( n , j ; m , k ) = σ x ( n , j ; m ) σ y ( m , k ; n ) ; σ x ( n j ; m m ) ( - 1 ) n - j sin ( π P n m ) / π ( n - j ) ;
σ y ( m k , n ) ( - 1 ) m - k - 1 [ W n m / 2 ( m - k ) ] 2 / 3.
u ˜ ( ν x , ν y ) 0 for ν x , ν y Δ ν / 2 = 1 / 2 δ x ; Δ x H = Δ y H = λ f Δ ν .
u ( n δ x , m δ x ) = u n m .
v n m = u n m / sinc [ c δ ν ( x 0 + n δ x ) ] = u n m / sinc [ c ( M + n / N ) ] ; δ ν = 1 / Δ x ; x 0 δ ν = M .
v n m v ˜ ( j δ ν , k δ ν ) = v ˜ j k E ( φ j k / 2 π )
const v ˜ max = c ( δ ν ) 2 W max .
const ν j k / c ( δ ν ) 2 = A j k ; A j k W max .
n - j ( m - j ) 2 n 0 3
u ( x ) u ( x ) Σ ( n ) δ ( x - n δ x ) = v ( x ) .
u ˜ ( ν ) = u ( x ) E ( - v x ) d x ;
v ˜ ( ν ) = Σ ( n ) u ( x ) δ ( x - n δ x ) E ( - ν x ) d x = Σ ( n ) u ( n δ x ) E ( - ν n δ x ) .
Σ ( n ) δ ( x - n δ x ) = Σ ( m ) E ( m x / δ x ) ;
v ˜ ( ν ) = Σ ( m ) u ( x ) E [ x ( - ν + m / δ x ) ] d x = Σ ( m ) u ˜ ( ν - m / δ x ) .
δ x 1 / Δ ν 0 .
v ˜ ( ν x , ν y ) = Σ Σ ( n , m ) u ˜ ( ν x - n / δ x , ν y - m / δ x ) .

Metrics