Abstract

The experimental technique and the general theory of the hakenmethode (hook method or dispersion method) is reviewed. The review presents the basic experimental arrangement for the formation of hooks in a crossed interferometer–spectrometer system and the experimental parameters of importance of an f-value measurement by the hakenmethode. The significance of the complex index of refraction of a dispersive and dissipative medium and its relation to the hakenmethode technique, as applied to single- and multiple-line spectra is described in some detail. Penkin’s total absorption method for measuring absolute f values by combining the hakenmethode with absorption measurements is reviewed. A method (similar to a Voigt profile analysis) is introduced for studying the formation of hooks about spectral lines whose absorption widths may be an appreciable fraction of the hook separation.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Rozhdestvenskii, Ann. Physik 39, 307 (1912).
  2. A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1961), Chap. III, p. 142.
  3. R. W. Wood, Physical Optics (The Macmillan Company, New York, 1952), 3rd ed., Chap. XV, p. 500.
  4. R. Ditchburn, Light (Interscience Publishers, Inc., New York, 1963), p. 680.
  5. V. K. Prokofiev, Phil. Mag. 3, 1010 (1927).
  6. S. Korff, G. Breit, Rev. Mod. Phys. 4, 471 (1932).
    [CrossRef]
  7. R. Ladenburg, Rev. Mod. Phys. 5, 243 (1933). See also Ref. 31.
    [CrossRef]
  8. E. W. Foster, Reports on Progress in Physics, Vol. 27 (The Institute of Physics and the Physical Society, London, 1964), pp. 469–551.
    [CrossRef]
  9. N. P. Penkin, J. Quant. Spectry. Radiative Transfer 4, 41 (1964); this excellent review article has been translated from the Russian by J. L. Tech, Harvard College Observatory, June1964. See also G. F. Parchevskii, N. P. Penkin, Vestnik Leningradskovo Universiteta 11, p. 113 (1964); this has also been translated by J. L. Tech, Harvard College Observatory, June1964.
    [CrossRef]
  10. I. Meroz, Ed., Optical Transition Probabilities, available from the Office of Technical Services, U.S. Department of Commerce, Washington, D.C., Vol. 1. Also see Ref. 11.
  11. I. Meroz, Ed., Optical Transition Probabilities, available from the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., Vol. 2.
  12. Yu. I. Ostrovskii, N. P. Penkin, L. N. Shabanova, Soviet Phys.–Dokl. 3, 538 (1958).
  13. Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 3 (1961).
  14. Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 219 (1961).
  15. A. M. Shukhtin, Opt. Spectry. 10, 222 (1961).
  16. Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 1 (1961).
  17. Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 307 (1961).
  18. N. P. Penkin, L. N. Shabanova, Opt. Spectry. 12, 1 (1962).
  19. Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 12, 379 (1962).
  20. N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 5 (1963).
  21. N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 87 (1963).
  22. A. M. Shukhtin, Opt. Spectry. 14, 108 (1963).
  23. N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 3 (1963).
  24. N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 83 (1963).
  25. L. N. Shabanova, Opt. Spectry. 35, 450 (1963).
  26. V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 15, 458 (1963).
  27. I. Yu. Yu. Slavenas, Opt. Spectry. 16, 214 (1964).
  28. V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 17, 82 (1964).
  29. A. K. Valters, G. R. Startsev, Opt. Spectry. 17, 262 (1964).
  30. V. S. Egorov, V. N. Skrebov, A. M. Shukhtin, Opt. Spectry. 20, 211 (1966).
  31. R. Ladenburg, G. Wolfsohn, Z. Physik 63, 616 (1930).
    [CrossRef]
  32. R. Ladenburg, Z. Physik 48, 15 (1928).
    [CrossRef]
  33. R. Ladenburg, H. Kopfermann, Z. Physik 48, 26 (1928).
    [CrossRef]
  34. R. Ladenburg, H. Kopfermann, Z. Physik 48, 51 (1928).
    [CrossRef]
  35. A. Carst, R. Ladenburg, Z. Physik 48, 192 (1928).
    [CrossRef]
  36. H. Kopfermann, R. Ladenburg, Z. Physik 65, 167 (1930).
    [CrossRef]
  37. R. Ladenburg, S. Levy, Z. Physik 65, 189 (1930).
    [CrossRef]
  38. A. Pery-Thorne, J. E. Chamberlain, Proc. Phys. Soc. 82, 133 (1963).
    [CrossRef]
  39. Yu. A. Dunaev, G. K. Tumakaev, A. M. Shukhtin, Soviet Phys.–Tech. Phys. 6, 815 (1962).
  40. G. K. Tumakaev, V. R. Lazovskaya, Soviet Phys.–Tech. Phys. 9, 1449 (1965).
  41. B. Cary, W. Nickels, “A Feasibility Study of the Measurement of Ion Densities Behind Air Shocks by Introducing Small Amounts of Lithium Vapor”, General Electric, Missile and Space Division, Tech. Inform. Series R63SD82, September1963.
  42. W. H. Parkinson, Bull. Am. Phys. Soc. 12, 825 (1967).
  43. M. C. E. Huber, J. Opt. Soc. Am. 56, 1428 (1966).
  44. A. Filippov, W. Prokofjew, Z. Physik 56, 458 (1929).
    [CrossRef]
  45. B. Brehm, W. Demtröder, O. Osberghaus, Physics of Electronic and Atomic Collisions (W. A. Benjamin, Inc., New York, 1961), p. 4.
  46. Yu. M. Kagan, Ya. P. Koritskii, Opt. Spectry. 11, 166 (1961).
  47. R. J. Corbone, P. R. Longaker, Appl. Phys. Letters 4, 32 (1964).
    [CrossRef]
  48. W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley Publishing Company, Inc., Reading, Mass., 1956), Chap. 11, p. 171.
  49. E. U. Condon, G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1935), Chap. IV, pp. 107, 99, 133.
  50. V. K. Prokofiev, in Ref. 10, p. 1.
  51. G. I. Goldberg, in Ref. 10, p. 301.
  52. N. P. Penkin, in Ref. 10, p. 149.
  53. Yu. I. Ostrovskii, N. P. Penkin, in Ref. 10, p. 422.
  54. V. K. Prokofiev, in Ref. 10, p. 24.
  55. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), p. viii.

1967 (1)

W. H. Parkinson, Bull. Am. Phys. Soc. 12, 825 (1967).

1966 (2)

M. C. E. Huber, J. Opt. Soc. Am. 56, 1428 (1966).

V. S. Egorov, V. N. Skrebov, A. M. Shukhtin, Opt. Spectry. 20, 211 (1966).

1965 (1)

G. K. Tumakaev, V. R. Lazovskaya, Soviet Phys.–Tech. Phys. 9, 1449 (1965).

1964 (4)

R. J. Corbone, P. R. Longaker, Appl. Phys. Letters 4, 32 (1964).
[CrossRef]

I. Yu. Yu. Slavenas, Opt. Spectry. 16, 214 (1964).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 17, 82 (1964).

A. K. Valters, G. R. Startsev, Opt. Spectry. 17, 262 (1964).

1963 (8)

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 5 (1963).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 87 (1963).

A. M. Shukhtin, Opt. Spectry. 14, 108 (1963).

N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 3 (1963).

N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 83 (1963).

L. N. Shabanova, Opt. Spectry. 35, 450 (1963).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 15, 458 (1963).

A. Pery-Thorne, J. E. Chamberlain, Proc. Phys. Soc. 82, 133 (1963).
[CrossRef]

1962 (3)

Yu. A. Dunaev, G. K. Tumakaev, A. M. Shukhtin, Soviet Phys.–Tech. Phys. 6, 815 (1962).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 12, 1 (1962).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 12, 379 (1962).

1961 (6)

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 3 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 219 (1961).

A. M. Shukhtin, Opt. Spectry. 10, 222 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 1 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 307 (1961).

Yu. M. Kagan, Ya. P. Koritskii, Opt. Spectry. 11, 166 (1961).

1958 (1)

Yu. I. Ostrovskii, N. P. Penkin, L. N. Shabanova, Soviet Phys.–Dokl. 3, 538 (1958).

1933 (1)

R. Ladenburg, Rev. Mod. Phys. 5, 243 (1933). See also Ref. 31.
[CrossRef]

1932 (1)

S. Korff, G. Breit, Rev. Mod. Phys. 4, 471 (1932).
[CrossRef]

1930 (3)

H. Kopfermann, R. Ladenburg, Z. Physik 65, 167 (1930).
[CrossRef]

R. Ladenburg, S. Levy, Z. Physik 65, 189 (1930).
[CrossRef]

R. Ladenburg, G. Wolfsohn, Z. Physik 63, 616 (1930).
[CrossRef]

1929 (1)

A. Filippov, W. Prokofjew, Z. Physik 56, 458 (1929).
[CrossRef]

1928 (4)

R. Ladenburg, Z. Physik 48, 15 (1928).
[CrossRef]

R. Ladenburg, H. Kopfermann, Z. Physik 48, 26 (1928).
[CrossRef]

R. Ladenburg, H. Kopfermann, Z. Physik 48, 51 (1928).
[CrossRef]

A. Carst, R. Ladenburg, Z. Physik 48, 192 (1928).
[CrossRef]

1927 (1)

V. K. Prokofiev, Phil. Mag. 3, 1010 (1927).

1912 (1)

D. S. Rozhdestvenskii, Ann. Physik 39, 307 (1912).

Brehm, B.

B. Brehm, W. Demtröder, O. Osberghaus, Physics of Electronic and Atomic Collisions (W. A. Benjamin, Inc., New York, 1961), p. 4.

Breit, G.

S. Korff, G. Breit, Rev. Mod. Phys. 4, 471 (1932).
[CrossRef]

Carst, A.

A. Carst, R. Ladenburg, Z. Physik 48, 192 (1928).
[CrossRef]

Cary, B.

B. Cary, W. Nickels, “A Feasibility Study of the Measurement of Ion Densities Behind Air Shocks by Introducing Small Amounts of Lithium Vapor”, General Electric, Missile and Space Division, Tech. Inform. Series R63SD82, September1963.

Chamberlain, J. E.

A. Pery-Thorne, J. E. Chamberlain, Proc. Phys. Soc. 82, 133 (1963).
[CrossRef]

Condon, E. U.

E. U. Condon, G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1935), Chap. IV, pp. 107, 99, 133.

Corbone, R. J.

R. J. Corbone, P. R. Longaker, Appl. Phys. Letters 4, 32 (1964).
[CrossRef]

Demtröder, W.

B. Brehm, W. Demtröder, O. Osberghaus, Physics of Electronic and Atomic Collisions (W. A. Benjamin, Inc., New York, 1961), p. 4.

Ditchburn, R.

R. Ditchburn, Light (Interscience Publishers, Inc., New York, 1963), p. 680.

Dunaev, Yu. A.

Yu. A. Dunaev, G. K. Tumakaev, A. M. Shukhtin, Soviet Phys.–Tech. Phys. 6, 815 (1962).

Egorov, V. S.

V. S. Egorov, V. N. Skrebov, A. M. Shukhtin, Opt. Spectry. 20, 211 (1966).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 17, 82 (1964).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 15, 458 (1963).

Feshbach, H.

P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), p. viii.

Filippov, A.

A. Filippov, W. Prokofjew, Z. Physik 56, 458 (1929).
[CrossRef]

Foster, E. W.

E. W. Foster, Reports on Progress in Physics, Vol. 27 (The Institute of Physics and the Physical Society, London, 1964), pp. 469–551.
[CrossRef]

Goldberg, G. I.

G. I. Goldberg, in Ref. 10, p. 301.

Huber, M. C. E.

M. C. E. Huber, J. Opt. Soc. Am. 56, 1428 (1966).

Kagan, Yu. M.

Yu. M. Kagan, Ya. P. Koritskii, Opt. Spectry. 11, 166 (1961).

Kopfermann, H.

H. Kopfermann, R. Ladenburg, Z. Physik 65, 167 (1930).
[CrossRef]

R. Ladenburg, H. Kopfermann, Z. Physik 48, 26 (1928).
[CrossRef]

R. Ladenburg, H. Kopfermann, Z. Physik 48, 51 (1928).
[CrossRef]

Korff, S.

S. Korff, G. Breit, Rev. Mod. Phys. 4, 471 (1932).
[CrossRef]

Koritskii, Ya. P.

Yu. M. Kagan, Ya. P. Koritskii, Opt. Spectry. 11, 166 (1961).

Koslov, Yu. G.

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 17, 82 (1964).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 15, 458 (1963).

Ladenburg, R.

R. Ladenburg, Rev. Mod. Phys. 5, 243 (1933). See also Ref. 31.
[CrossRef]

R. Ladenburg, G. Wolfsohn, Z. Physik 63, 616 (1930).
[CrossRef]

H. Kopfermann, R. Ladenburg, Z. Physik 65, 167 (1930).
[CrossRef]

R. Ladenburg, S. Levy, Z. Physik 65, 189 (1930).
[CrossRef]

R. Ladenburg, H. Kopfermann, Z. Physik 48, 51 (1928).
[CrossRef]

R. Ladenburg, Z. Physik 48, 15 (1928).
[CrossRef]

R. Ladenburg, H. Kopfermann, Z. Physik 48, 26 (1928).
[CrossRef]

A. Carst, R. Ladenburg, Z. Physik 48, 192 (1928).
[CrossRef]

Lazovskaya, V. R.

G. K. Tumakaev, V. R. Lazovskaya, Soviet Phys.–Tech. Phys. 9, 1449 (1965).

Levy, S.

R. Ladenburg, S. Levy, Z. Physik 65, 189 (1930).
[CrossRef]

Longaker, P. R.

R. J. Corbone, P. R. Longaker, Appl. Phys. Letters 4, 32 (1964).
[CrossRef]

Mitchell, A. C. G.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1961), Chap. III, p. 142.

Morse, P. M.

P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), p. viii.

Nickels, W.

B. Cary, W. Nickels, “A Feasibility Study of the Measurement of Ion Densities Behind Air Shocks by Introducing Small Amounts of Lithium Vapor”, General Electric, Missile and Space Division, Tech. Inform. Series R63SD82, September1963.

Osberghaus, O.

B. Brehm, W. Demtröder, O. Osberghaus, Physics of Electronic and Atomic Collisions (W. A. Benjamin, Inc., New York, 1961), p. 4.

Ostrovskii, Yu. I.

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 12, 379 (1962).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 1 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 307 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 3 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 219 (1961).

Yu. I. Ostrovskii, N. P. Penkin, L. N. Shabanova, Soviet Phys.–Dokl. 3, 538 (1958).

Yu. I. Ostrovskii, N. P. Penkin, in Ref. 10, p. 422.

Panofsky, W. K. H.

W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley Publishing Company, Inc., Reading, Mass., 1956), Chap. 11, p. 171.

Parkinson, W. H.

W. H. Parkinson, Bull. Am. Phys. Soc. 12, 825 (1967).

Penkin, N. P.

N. P. Penkin, J. Quant. Spectry. Radiative Transfer 4, 41 (1964); this excellent review article has been translated from the Russian by J. L. Tech, Harvard College Observatory, June1964. See also G. F. Parchevskii, N. P. Penkin, Vestnik Leningradskovo Universiteta 11, p. 113 (1964); this has also been translated by J. L. Tech, Harvard College Observatory, June1964.
[CrossRef]

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 5 (1963).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 87 (1963).

N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 3 (1963).

N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 83 (1963).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 12, 379 (1962).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 12, 1 (1962).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 307 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 1 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 219 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 3 (1961).

Yu. I. Ostrovskii, N. P. Penkin, L. N. Shabanova, Soviet Phys.–Dokl. 3, 538 (1958).

Yu. I. Ostrovskii, N. P. Penkin, in Ref. 10, p. 422.

N. P. Penkin, in Ref. 10, p. 149.

Pery-Thorne, A.

A. Pery-Thorne, J. E. Chamberlain, Proc. Phys. Soc. 82, 133 (1963).
[CrossRef]

Phillips, M.

W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley Publishing Company, Inc., Reading, Mass., 1956), Chap. 11, p. 171.

Prokofiev, V. K.

V. K. Prokofiev, Phil. Mag. 3, 1010 (1927).

V. K. Prokofiev, in Ref. 10, p. 1.

V. K. Prokofiev, in Ref. 10, p. 24.

Prokofjew, W.

A. Filippov, W. Prokofjew, Z. Physik 56, 458 (1929).
[CrossRef]

Rozhdestvenskii, D. S.

D. S. Rozhdestvenskii, Ann. Physik 39, 307 (1912).

Shabanova, L. N.

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 87 (1963).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 5 (1963).

L. N. Shabanova, Opt. Spectry. 35, 450 (1963).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 12, 1 (1962).

Yu. I. Ostrovskii, N. P. Penkin, L. N. Shabanova, Soviet Phys.–Dokl. 3, 538 (1958).

Shortley, G. H.

E. U. Condon, G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1935), Chap. IV, pp. 107, 99, 133.

Shukhtin, A. M.

V. S. Egorov, V. N. Skrebov, A. M. Shukhtin, Opt. Spectry. 20, 211 (1966).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 17, 82 (1964).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 15, 458 (1963).

A. M. Shukhtin, Opt. Spectry. 14, 108 (1963).

Yu. A. Dunaev, G. K. Tumakaev, A. M. Shukhtin, Soviet Phys.–Tech. Phys. 6, 815 (1962).

A. M. Shukhtin, Opt. Spectry. 10, 222 (1961).

Skrebov, V. N.

V. S. Egorov, V. N. Skrebov, A. M. Shukhtin, Opt. Spectry. 20, 211 (1966).

Slavenas, I. Yu. Yu.

I. Yu. Yu. Slavenas, Opt. Spectry. 16, 214 (1964).

N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 83 (1963).

N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 3 (1963).

Startsev, G. R.

A. K. Valters, G. R. Startsev, Opt. Spectry. 17, 262 (1964).

Tumakaev, G. K.

G. K. Tumakaev, V. R. Lazovskaya, Soviet Phys.–Tech. Phys. 9, 1449 (1965).

Yu. A. Dunaev, G. K. Tumakaev, A. M. Shukhtin, Soviet Phys.–Tech. Phys. 6, 815 (1962).

Valters, A. K.

A. K. Valters, G. R. Startsev, Opt. Spectry. 17, 262 (1964).

Wolfsohn, G.

R. Ladenburg, G. Wolfsohn, Z. Physik 63, 616 (1930).
[CrossRef]

Wood, R. W.

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1952), 3rd ed., Chap. XV, p. 500.

Zemansky, M. W.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1961), Chap. III, p. 142.

Ann. Physik (1)

D. S. Rozhdestvenskii, Ann. Physik 39, 307 (1912).

Appl. Phys. Letters (1)

R. J. Corbone, P. R. Longaker, Appl. Phys. Letters 4, 32 (1964).
[CrossRef]

Bull. Am. Phys. Soc. (1)

W. H. Parkinson, Bull. Am. Phys. Soc. 12, 825 (1967).

J. Opt. Soc. Am. (1)

M. C. E. Huber, J. Opt. Soc. Am. 56, 1428 (1966).

J. Quant. Spectry. Radiative Transfer (1)

N. P. Penkin, J. Quant. Spectry. Radiative Transfer 4, 41 (1964); this excellent review article has been translated from the Russian by J. L. Tech, Harvard College Observatory, June1964. See also G. F. Parchevskii, N. P. Penkin, Vestnik Leningradskovo Universiteta 11, p. 113 (1964); this has also been translated by J. L. Tech, Harvard College Observatory, June1964.
[CrossRef]

Opt. Spectry. (19)

Yu. M. Kagan, Ya. P. Koritskii, Opt. Spectry. 11, 166 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 3 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 10, 219 (1961).

A. M. Shukhtin, Opt. Spectry. 10, 222 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 1 (1961).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 11, 307 (1961).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 12, 1 (1962).

Yu. I. Ostrovskii, N. P. Penkin, Opt. Spectry. 12, 379 (1962).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 5 (1963).

N. P. Penkin, L. N. Shabanova, Opt. Spectry. 14, 87 (1963).

A. M. Shukhtin, Opt. Spectry. 14, 108 (1963).

N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 3 (1963).

N. P. Penkin, I. Yu. Yu. Slavenas, Opt. Spectry. 15, 83 (1963).

L. N. Shabanova, Opt. Spectry. 35, 450 (1963).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 15, 458 (1963).

I. Yu. Yu. Slavenas, Opt. Spectry. 16, 214 (1964).

V. S. Egorov, Yu. G. Koslov, A. M. Shukhtin, Opt. Spectry. 17, 82 (1964).

A. K. Valters, G. R. Startsev, Opt. Spectry. 17, 262 (1964).

V. S. Egorov, V. N. Skrebov, A. M. Shukhtin, Opt. Spectry. 20, 211 (1966).

Phil. Mag. (1)

V. K. Prokofiev, Phil. Mag. 3, 1010 (1927).

Proc. Phys. Soc. (1)

A. Pery-Thorne, J. E. Chamberlain, Proc. Phys. Soc. 82, 133 (1963).
[CrossRef]

Rev. Mod. Phys. (2)

S. Korff, G. Breit, Rev. Mod. Phys. 4, 471 (1932).
[CrossRef]

R. Ladenburg, Rev. Mod. Phys. 5, 243 (1933). See also Ref. 31.
[CrossRef]

Soviet Phys.–Dokl. (1)

Yu. I. Ostrovskii, N. P. Penkin, L. N. Shabanova, Soviet Phys.–Dokl. 3, 538 (1958).

Soviet Phys.–Tech. Phys. (2)

Yu. A. Dunaev, G. K. Tumakaev, A. M. Shukhtin, Soviet Phys.–Tech. Phys. 6, 815 (1962).

G. K. Tumakaev, V. R. Lazovskaya, Soviet Phys.–Tech. Phys. 9, 1449 (1965).

Z. Physik (8)

A. Filippov, W. Prokofjew, Z. Physik 56, 458 (1929).
[CrossRef]

R. Ladenburg, G. Wolfsohn, Z. Physik 63, 616 (1930).
[CrossRef]

R. Ladenburg, Z. Physik 48, 15 (1928).
[CrossRef]

R. Ladenburg, H. Kopfermann, Z. Physik 48, 26 (1928).
[CrossRef]

R. Ladenburg, H. Kopfermann, Z. Physik 48, 51 (1928).
[CrossRef]

A. Carst, R. Ladenburg, Z. Physik 48, 192 (1928).
[CrossRef]

H. Kopfermann, R. Ladenburg, Z. Physik 65, 167 (1930).
[CrossRef]

R. Ladenburg, S. Levy, Z. Physik 65, 189 (1930).
[CrossRef]

Other (16)

B. Brehm, W. Demtröder, O. Osberghaus, Physics of Electronic and Atomic Collisions (W. A. Benjamin, Inc., New York, 1961), p. 4.

B. Cary, W. Nickels, “A Feasibility Study of the Measurement of Ion Densities Behind Air Shocks by Introducing Small Amounts of Lithium Vapor”, General Electric, Missile and Space Division, Tech. Inform. Series R63SD82, September1963.

E. W. Foster, Reports on Progress in Physics, Vol. 27 (The Institute of Physics and the Physical Society, London, 1964), pp. 469–551.
[CrossRef]

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1961), Chap. III, p. 142.

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1952), 3rd ed., Chap. XV, p. 500.

R. Ditchburn, Light (Interscience Publishers, Inc., New York, 1963), p. 680.

I. Meroz, Ed., Optical Transition Probabilities, available from the Office of Technical Services, U.S. Department of Commerce, Washington, D.C., Vol. 1. Also see Ref. 11.

I. Meroz, Ed., Optical Transition Probabilities, available from the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., Vol. 2.

W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley Publishing Company, Inc., Reading, Mass., 1956), Chap. 11, p. 171.

E. U. Condon, G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, London, 1935), Chap. IV, pp. 107, 99, 133.

V. K. Prokofiev, in Ref. 10, p. 1.

G. I. Goldberg, in Ref. 10, p. 301.

N. P. Penkin, in Ref. 10, p. 149.

Yu. I. Ostrovskii, N. P. Penkin, in Ref. 10, p. 422.

V. K. Prokofiev, in Ref. 10, p. 24.

P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), p. viii.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical interferometer–spectrometer system for f-value measurements. The S1L1P1L2 system forms a parallel beam of light. The mirrors M1M2M3M4 form the interferometer. The test gas is placed in one leg of the interferometer in the test cell T1. C1 and C2 are windows. The light emerging from the interferometer is focused on the entrance slit P2 of the spectrometer. G1 is a grating. A set of fringes is produced on the observation screen P3 at each wavelength passing through the filter F1. In general, the spectrum is continuous.

Fig. 2
Fig. 2

Fringe profiles obtained by the interferometer–spectrometer system. Some excellent photographs of hooks about spectral series in sodium are contained in an early paper by Filippov and Prokofjew.44

Fig. 3
Fig. 3

Effective paths traversed by light beams through the legs of an interferometer.

Fig. 4
Fig. 4

Fringe profiles. The area enclosed by the dotted rectangle (a) is intended to depict the field of view as might be seen by a conventional spectrograph in the visible spectrum when the two arms of the vacuo interferometer are of equal path length. The field of view enclosed by the rectangle (b) is what would be obtained when the two arms are of unequal length.

Fig. 5
Fig. 5

Plot of ψ(λ) for a doublet line.

Fig. 6
Fig. 6

(a) Appearance of the fringe profile about a doublet for ψmin < 4πK/r0l. (b) Appearance of the fringe profile about a doublet for ψmin > 4πK/r0l.

Fig. 7
Fig. 7

The function ψ(λ) for a spectral series and the corresponding fringe profiles are shown in Figs. (a) and (b), respectively.

Fig. 8
Fig. 8

Relationship between the hook separation μ and Lorentz and doppler broadening. Figure is duplicated for stereoscopic viewing.55

Fig. 9
Fig. 9

Gaussian quadrature and asymptotic expansion of the hakenmethode function.

Fig. 10
Fig. 10

Fringe profiles for lines of different strengths but with the same value of line width.

Fig. 11
Fig. 11

Detailed structure of the fringe profile about an absorption line with a natural line width ΔλN.

Tables (1)

Tables Icon

Table I Formulas for Evaluation of Nf and f Values

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

I ( y , ω ) = 1 2 I 0 { [ 1 - exp ( ω κ l / c ) ] 2 + 4 exp - ( ω κ l / c ) × cos 2 ( ω / 2 c ) [ ( n - 1 ) l - Δ l + ϕ y ] } .
( n - 1 ) l - Δ l + ϕ y - k λ ; k = 0 , ± 1 , ± 2 , .
[ n ( λ ) - 1 ] l - Δ l + ϕ y = ( k + p ) ( λ + Δ λ )
[ ( n ( λ ) - 1 ] l - Δ l + ϕ y = k λ .
l ( d n / d λ ) = - K
z = e / m ω 0 2 - ω 2 + i γ ω E ,
α ˜ = e 2 / m ω 0 2 - ω 2 + i γ ω .
α ˜ n = S n n f n n e 2 / m ω n n 2 - ω 2 + i γ n n ω ,
D = ˜ E = E + 4 π P = ( 1 + 4 π n α ˜ n N n ) E ,
N N ( M 2 π k T ) 1 2 - + d v exp ( - M v 2 2 k T ) ,
n ˜ - 1 = 2 π n N n ( M 2 π k T ) 1 2 - + d v exp ( - M v 2 2 k T ) × S n n f n n e 2 / m ω n n 2 - ω 2 ( 1 + v / c ) 2 + i γ × n n ω ( 1 + v / c ) .
n - 1 = 2 π Re n N n α ˜ n , κ = 2 π Im n N n α ˜ n .
I = I 0 exp ( - 2 ω κ x / c ) = I 0 exp ( - n N n μ n x ) .
μ n = ( 4 π e 2 / m c ) S n n f n n γ n n ω 2 ( ω n n 2 - ω 2 ) 2 + γ n n 2 ω 2 .
n - 1 = 2 π n N n [ S n n f n n ( e 2 / m ) ( ω n n 2 - ω 2 ) ( ω n n 2 - ω 2 ) 2 + γ n n 2 ω 2 ] ,
n - 1 = 2 π n N n [ S n n f n n ( e 2 / m ) ( ω n n 2 - ω 2 ) ] .
n - 1 = π N n f n n ω n n e 2 / m ( ω n n - ω ) .
l ( d n / d λ ) = - ( r 0 / 4 π ) N f l λ 0 3 / ( λ - λ 0 ) 2 = - K .
λ ± = λ 0 ± ( r 0 N f λ 0 3 l / 4 π K ) 1 2 .
N f = ( π K / r 0 λ 0 3 l ) Δ 2 .
n - 1 = r 0 4 π ( N 1 f 1 λ 1 3 λ - λ 1 + N 2 f 2 λ 2 3 λ - λ 2 ) ,
N 1 f 1 λ 1 3 ( λ - λ 1 ) 2 + N 2 f 2 λ 2 3 ( λ - λ 2 ) 2 = 4 π K r 0 l .
ψ ( λ ) = N 1 f 1 λ 1 3 ( λ - λ 1 ) 2 + N 2 f 2 λ 2 3 ( λ - λ 2 ) 2
W = ( λ 0 2 / 2 π c ) - + [ 1 - exp ( - p 2 / x 2 ) ] d x .
γ = 8 π 2 r 0 c l < k g 1             1 g k λ k l 2 f l k .
f = λ 0 8 π 3 r 0 K g k g j W 2 Δ 2 .
n - 1 = N ( M 2 π k T ) 1 2 f r 0 λ 0 2 2 π - + exp ( - M v 2 / 2 k T ) × 2 ω 0 [ ω 0 - ω ( 1 + v / c ) ] 4 [ ω 0 - ω ( 1 + v / c ) ] 2 + γ 2 d v ,
Δ ν D = ( ω 0 / π ) [ ln 2 ( 2 k T / M c 2 ) ] - = ( c Δ λ D / λ 0 2 ) ( ln 2 ) 1 2 ,
Δ 0 2 = N f l r 0 λ 0 2 / π K ,             R D = Δ ν D λ 0 2 / c Δ 0 ( ln 2 ) 1 2 = Δ λ D / Δ 0 , μ = ( λ 0 2 / π Δ 0 c ) ( ω - ω 0 ) ,             R N = γ λ 0 2 / 2 π c Δ 0 = Δ λ N / Δ 0 ,
- + [ ( μ - R D x ) 2 - R N 2 ] [ ( μ - R D x 2 ) 2 + R N 2 ] 2 e x 2 d x = ( π ) 1 2
μ + - μ - = 2 q = [ ( ω + - ω - ) / π c Δ 0 ] λ 0 2 = [ 2 ( λ + - λ - ) / Δ 0 ] = ( 2 Δ / Δ 0 ) ,
N f = π K l r 0 λ 0 3 [ Δ 2 + ( Δ λ N ) 2 ] 2 [ Δ 2 - ( Δ λ N ) 2 ] .
0 { μ 2 - R D 2 z 2 - R N 2 } { ( μ 2 + R D 2 z 2 + R N 2 ) 2 - 4 μ 2 R D 2 z 2 z 2 e - z 2 d z = ( π ) 1 2 / 4.
H ( x , y ) 1 π 1 2 0 ( 1 2 x - t ) { ( 1 2 x - t ) 2 + y 2 } ( t ) 1 2 e - t d t = - 1 2 R D 2 .
R D = [ - 2 H ( x , y ) ] 1 2 ,
R N = y { 1 2 x + 1 2 ( x 2 + 4 y 2 ) 1 2 } - 1 2 [ - H ( x , y ) ] 1 2 ,
μ = { 1 2 x + 1 2 ( x 2 + 4 y 2 ) 1 2 } 1 2 [ - H ( x , y ) ] 1 2 .
H ( x , y ) = 1 2 ( π ) 1 2 e - 1 2 x 0 1 F ( v ) d v ,
F ( v ) = - ( 2 / π ) β tan ( β v ) { 1 2 x - y tan ( β v ) } 1 2 exp [ y tan ( β v ) ] + tan [ ( π / 2 ) v ] { 1 2 x + y tan [ ( π / 2 ) v ] 1 2 } exp { - y tan [ ( π / 2 ) v ] } , β = tan - 1 ( x / 2 y ) .
H ( x , y ) = n = 0 H n ( x , y ) ,
H n ( x , y ) = - 4 n + 1 ( π ) 1 2 1 ( x 2 + 4 y 2 ) n + 1 0 ( 1 2 x - t ) ( t ) 1 2 ( x - t ) n t n e - t d t .
- 1 = N f r 0 λ 0 z 4 π ( λ - λ 0 ) ( λ - λ 0 ) 2 + ( 1 2 Δ λ N ) 2 .
λ - λ 0 = ± 1 2 Δ 0 { 1 - 3 2 ( Δ λ N / Δ 0 ) 2 + }
λ - λ 0 = ± 1 2 Δ λ N { 1 + 2 ( Δ λ N / Δ 0 ) 2 + } .

Metrics