Abstract

A spectroradiometer is described which is designed to make measurements of spectral radiance, irradiance, transmittance, and reflectance. In one minute the Hilger D300 monochromator is set to the next wavelength to be measured and a measurement is made of (a) the dark current of the photomultiplier, (b) the photocurrent produced by the reference source, (c) a voltage indicating the wavelength, and (d) the photocurrent produced by a test source. An integrating digital voltmeter with a 10-sec gate is used. The data are recorded on punched cards and analyzed by a digital computer. Experimental results are given to illustrate the performance. The applications described include calibration of standards of spectral radiance and irradiance from a blackbody at the freezing point of platinum and the developmet of a color temperature scale.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mori, I. Niikura, T. Azuma, CIE Compt. Rend. 15, 269 (1963).
  2. F. J. Studer, W. R. Jacobsen, Gen. Elec. Rev. 52, 34 (1949).
  3. H. W. Bodmann, R. Jantzen, Lichttechnik 16, 20 (1964).
  4. F. Grum, Appl. Opt. 2, 237 (1963).
    [Crossref]
  5. H. K. Hammond, W. L. Holford, M. L. Kuder, J. Res. Natl. Bur. Std. 64C, 151 (1960).
    [Crossref]
  6. W. J. Brown, Appl. Opt. 1, 227 (1962).
    [Crossref]
  7. L. Thorington, J. Parascandola, G. Schiazzano, Illuminating Engineering Society Conference Preprint No. 3, Sept.1965.
  8. C. L. Sanders, Appl. Opt. 1, 207 (1962).
    [Crossref]
  9. C. L. Sanders, O. C. Jones, J. Opt. Soc. Am. 52, 731 (1962).
    [Crossref]
  10. O. C. Jones, C. L. Sanders, J. Opt. Soc. Am. 51, 105 (1961).
    [Crossref]
  11. W. E. K. Middleton, C. L. Sanders, Illum. Engr. 48, 254 (1953).
  12. H. J. Kostowski, Tech. News from U. S. Dept. of Commerce. NBS, S.T.R.–3102 (1964).
  13. Ralph Stair, William E. Schneider, John J. Jackson, NBS Rept. B014 (1963).
  14. H. T. Wensch, D. B. Judd, W. F. Roeser, J. Res. Natl. Bur. Std. 12, 527 (1934).
  15. G. W. Wyszecki, J. Opt. Soc. Am. 55, 1319 (1965).
    [Crossref] [PubMed]
  16. Harry J. Keegan, John C. Schleter, Deane B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
    [Crossref]

1965 (2)

L. Thorington, J. Parascandola, G. Schiazzano, Illuminating Engineering Society Conference Preprint No. 3, Sept.1965.

G. W. Wyszecki, J. Opt. Soc. Am. 55, 1319 (1965).
[Crossref] [PubMed]

1964 (1)

H. W. Bodmann, R. Jantzen, Lichttechnik 16, 20 (1964).

1963 (2)

F. Grum, Appl. Opt. 2, 237 (1963).
[Crossref]

L. Mori, I. Niikura, T. Azuma, CIE Compt. Rend. 15, 269 (1963).

1962 (4)

1961 (1)

1960 (1)

H. K. Hammond, W. L. Holford, M. L. Kuder, J. Res. Natl. Bur. Std. 64C, 151 (1960).
[Crossref]

1953 (1)

W. E. K. Middleton, C. L. Sanders, Illum. Engr. 48, 254 (1953).

1949 (1)

F. J. Studer, W. R. Jacobsen, Gen. Elec. Rev. 52, 34 (1949).

1934 (1)

H. T. Wensch, D. B. Judd, W. F. Roeser, J. Res. Natl. Bur. Std. 12, 527 (1934).

Azuma, T.

L. Mori, I. Niikura, T. Azuma, CIE Compt. Rend. 15, 269 (1963).

Bodmann, H. W.

H. W. Bodmann, R. Jantzen, Lichttechnik 16, 20 (1964).

Brown, W. J.

Grum, F.

Hammond, H. K.

H. K. Hammond, W. L. Holford, M. L. Kuder, J. Res. Natl. Bur. Std. 64C, 151 (1960).
[Crossref]

Holford, W. L.

H. K. Hammond, W. L. Holford, M. L. Kuder, J. Res. Natl. Bur. Std. 64C, 151 (1960).
[Crossref]

Jackson, John J.

Ralph Stair, William E. Schneider, John J. Jackson, NBS Rept. B014 (1963).

Jacobsen, W. R.

F. J. Studer, W. R. Jacobsen, Gen. Elec. Rev. 52, 34 (1949).

Jantzen, R.

H. W. Bodmann, R. Jantzen, Lichttechnik 16, 20 (1964).

Jones, O. C.

Judd, D. B.

H. T. Wensch, D. B. Judd, W. F. Roeser, J. Res. Natl. Bur. Std. 12, 527 (1934).

Judd, Deane B.

Harry J. Keegan, John C. Schleter, Deane B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[Crossref]

Keegan, Harry J.

Harry J. Keegan, John C. Schleter, Deane B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[Crossref]

Kostowski, H. J.

H. J. Kostowski, Tech. News from U. S. Dept. of Commerce. NBS, S.T.R.–3102 (1964).

Kuder, M. L.

H. K. Hammond, W. L. Holford, M. L. Kuder, J. Res. Natl. Bur. Std. 64C, 151 (1960).
[Crossref]

Middleton, W. E. K.

W. E. K. Middleton, C. L. Sanders, Illum. Engr. 48, 254 (1953).

Mori, L.

L. Mori, I. Niikura, T. Azuma, CIE Compt. Rend. 15, 269 (1963).

Niikura, I.

L. Mori, I. Niikura, T. Azuma, CIE Compt. Rend. 15, 269 (1963).

Parascandola, J.

L. Thorington, J. Parascandola, G. Schiazzano, Illuminating Engineering Society Conference Preprint No. 3, Sept.1965.

Roeser, W. F.

H. T. Wensch, D. B. Judd, W. F. Roeser, J. Res. Natl. Bur. Std. 12, 527 (1934).

Sanders, C. L.

Schiazzano, G.

L. Thorington, J. Parascandola, G. Schiazzano, Illuminating Engineering Society Conference Preprint No. 3, Sept.1965.

Schleter, John C.

Harry J. Keegan, John C. Schleter, Deane B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[Crossref]

Schneider, William E.

Ralph Stair, William E. Schneider, John J. Jackson, NBS Rept. B014 (1963).

Stair, Ralph

Ralph Stair, William E. Schneider, John J. Jackson, NBS Rept. B014 (1963).

Studer, F. J.

F. J. Studer, W. R. Jacobsen, Gen. Elec. Rev. 52, 34 (1949).

Thorington, L.

L. Thorington, J. Parascandola, G. Schiazzano, Illuminating Engineering Society Conference Preprint No. 3, Sept.1965.

Wensch, H. T.

H. T. Wensch, D. B. Judd, W. F. Roeser, J. Res. Natl. Bur. Std. 12, 527 (1934).

Wyszecki, G. W.

Appl. Opt. (3)

CIE Compt. Rend. (1)

L. Mori, I. Niikura, T. Azuma, CIE Compt. Rend. 15, 269 (1963).

Gen. Elec. Rev. (1)

F. J. Studer, W. R. Jacobsen, Gen. Elec. Rev. 52, 34 (1949).

Illum. Engr. (1)

W. E. K. Middleton, C. L. Sanders, Illum. Engr. 48, 254 (1953).

Illuminating Engineering Society Conference Preprint No. 3 (1)

L. Thorington, J. Parascandola, G. Schiazzano, Illuminating Engineering Society Conference Preprint No. 3, Sept.1965.

J. Opt. Soc. Am. (3)

J. Res. Natl. Bur. Std. (3)

H. T. Wensch, D. B. Judd, W. F. Roeser, J. Res. Natl. Bur. Std. 12, 527 (1934).

H. K. Hammond, W. L. Holford, M. L. Kuder, J. Res. Natl. Bur. Std. 64C, 151 (1960).
[Crossref]

Harry J. Keegan, John C. Schleter, Deane B. Judd, J. Res. Natl. Bur. Std. 66A, 203 (1962).
[Crossref]

Lichttechnik (1)

H. W. Bodmann, R. Jantzen, Lichttechnik 16, 20 (1964).

Other (2)

H. J. Kostowski, Tech. News from U. S. Dept. of Commerce. NBS, S.T.R.–3102 (1964).

Ralph Stair, William E. Schneider, John J. Jackson, NBS Rept. B014 (1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Layout of spectroradiometer with the following parts. AMP is an amplifier; B is a compound baffle; C1, C2, and C3 are cams; CONV is a converter connecting the DVM digital voltmeter to the PUNCH (IBM 526); DM is a monochromator; D1, D2, and D3 are ground quartz diffusers; FW is a filter wheel carrying glass filters or neutral screens; GF is a roller on a microswitch; H is the lamp house for the reference lamp SR; H.T. P.S. is the power supply for the PMT; IC is the insulated case housing the spectroradiometer; L1, L2, and L3 are lenses; M is a semicircular front surface mirror; MgO is a magnesium oxide pressed plaque; NS1 and NS2 are neutral perforated screens; P is a 40-turn potentiometer; PMT is a photomultiplier tube; R is a rack containing electronic equipment; S1, S2, S3, S4, S5, and S6 are microswitches controlling the operation sequence of the spectroradiometer; SR, SS, and ST are reference, standard, and test sources, respectively; SD is a disk with a spiral groove; SL1 and SL2 are the entrance and exit slits of the DM; SM is a 1-rpm synchronous motor; T1 is a tube painted black inside; and T2 is a tube which is white inside.

Fig. 2
Fig. 2

Mirror and cam assembly. (a) A side view of complete assembly. (b) Front view of mirror and compound baffle (B1, B2, B3). (c) Front views of cams and microswitches.

Fig. 3
Fig. 3

Timing sequence for measurements in one cycle of operation.

Fig. 4
Fig. 4

The two arrangements used in comparing the spectral radiance of a blackbody with a strip filament lamp.

Fig. 5
Fig. 5

The ratio of the spectral radiance of lamp filament to the spectral radicnce of a blackbody at 2042°K vs wavelength. Dots are the actual measurements.

Fig. 6
Fig. 6

Two arrangements used in the determination of the spectral irradiance of a projection lamp from the spectral radiance of a strip filament. AL is the aperture on lens; d is the distance from AL to the lamp, or from the aperture AS (on the sphere S) to AL.

Fig. 7
Fig. 7

Dashed curve shows the standard deviation of spectral irradiance measurements on a projection lamp from 380 nm to 770 nm; solid curve shows the standard deviation of spectral radiance measurements on a fluorescent lamp in the same range. (Dots are experimental data.)

Fig. 8
Fig. 8

Relationship between the color temperature Tc and the voltage V of 500-W coiled filament lamp.

Fig. 9
Fig. 9

The relative spectral energy for a fluorescent lamp near the Hg green line. The wavelengths at which measurements are made are indicated by λ1 to λ13. Ei) are the corresponding readings. The values obtained for the continuum Eci) are shown by the crosses. The interval between the wavelengths λi is Δλ = 1 nm.

Fig. 10
Fig. 10

Relative spectral energy of a warm white fluorescent lamp measured with 1-mm slits.

Fig. 11
Fig. 11

Spectral radiance of the three primary stimuli (red, green, blue) in one field of a seven-field colorimeter. The inset shows the arrangement used in making the measurements.

Fig. 12
Fig. 12

Spectral radiance factor of a glossy red fluorescent paint when illuminated by CIE source C.

Fig. 13
Fig. 13

The two arrangements used to measure the relative spectral transmittance of a 10.1-cm diam integrating sphere S. The source is a tungsten–iodide lamp WI. The lens L2 images the MgO plaque or the opening in S on the entrance slit SL1.

Fig. 14
Fig. 14

The solid curve is relative spectral transmittance of an integrating sphere painted with BaSO4 over a white acrylic paint, soon after painting. The dashed curve is the result for the same sphere after three years. Both curves are adjusted to read the same value at 560 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E T λ = ( R T λ - R Z T λ ) K λ / ( R R T λ - R Z T λ ) ,
S line = i ( E ( λ i ) - E c ( λ i ) Δ λ / 5.0

Metrics