Abstract

The spectral radiance of the anode of a low current graphite are has been determined throughout most of the 850–210 nm region by utilizing a recently developed high accuracy spectroradiometer. The estimated standard deviation uncertainty varies from about 1.5% at the longer wavelengths to about 5% at the shorter. Results are given at twenty wavelength points in the region and also as a continuous function of wavelength throughout most of the region, excluding some areas of high molecular band radiation originating in the arc stream.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. MacPherson, J. Opt. Soc. Am. 30, 189 (1940).
    [CrossRef]
  2. D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).
  3. F. S. Johnson, J. Opt. Soc. Am. 46, 103 (1956).
  4. J. Euler, R. Ludwig, Arbeitsmethoden der Optischen Pyrometrie (Verlag Braun, Karlsruhe, 1960).
  5. M. R. Null, W. W. Lozier, J. Opt. Soc. Am. 52, 1156 (1962).
    [CrossRef]
  6. H. Magdeburg, Z. Naturforsch. 20a, 980 (1965).
  7. H. J. Kostkowski, C. R. Yokley, D. E. Erminy, A. T. Hattenburg, NBS Report 9099, 1965.
  8. H. J. Kostkowski, R. D. Lee, in Temperature, Its Measurement and Control in Science and Industry, C. F. Herzfeld, Ed. (Reinhold Publishing Corp., New York, 1962) Vol. 3, Part 1, p. 449.
  9. H. F. Stimson, J. Res. Natl. Bur. Std. 65a, 139 (1961).
    [CrossRef]
  10. Natl. Bur. Std. Tech. News Bull. 47, 175 (1963).
  11. H. Moser, in Temperature, Its Measurement and Control in Science and Industry, C. F. Herzfeld, Ed. (Reinhold Publishing Corp., New York, 1962) Vol. 3, Part 1, p. 167.
  12. N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Am. Electrochem. Soc. 67, 107 (1935).
    [CrossRef]

1965 (1)

H. Magdeburg, Z. Naturforsch. 20a, 980 (1965).

1963 (1)

Natl. Bur. Std. Tech. News Bull. 47, 175 (1963).

1962 (1)

1961 (1)

H. F. Stimson, J. Res. Natl. Bur. Std. 65a, 139 (1961).
[CrossRef]

1956 (1)

F. S. Johnson, J. Opt. Soc. Am. 46, 103 (1956).

1952 (1)

D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

1940 (1)

1935 (1)

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Am. Electrochem. Soc. 67, 107 (1935).
[CrossRef]

Chaney, N. K.

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Am. Electrochem. Soc. 67, 107 (1935).
[CrossRef]

Erminy, D. E.

H. J. Kostkowski, C. R. Yokley, D. E. Erminy, A. T. Hattenburg, NBS Report 9099, 1965.

Euler, J.

J. Euler, R. Ludwig, Arbeitsmethoden der Optischen Pyrometrie (Verlag Braun, Karlsruhe, 1960).

Glass, S. W.

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Am. Electrochem. Soc. 67, 107 (1935).
[CrossRef]

Hamister, V. C.

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Am. Electrochem. Soc. 67, 107 (1935).
[CrossRef]

Hattenburg, A. T.

H. J. Kostkowski, C. R. Yokley, D. E. Erminy, A. T. Hattenburg, NBS Report 9099, 1965.

Johnson, F. S.

F. S. Johnson, J. Opt. Soc. Am. 46, 103 (1956).

Kostkowski, H. J.

H. J. Kostkowski, R. D. Lee, in Temperature, Its Measurement and Control in Science and Industry, C. F. Herzfeld, Ed. (Reinhold Publishing Corp., New York, 1962) Vol. 3, Part 1, p. 449.

H. J. Kostkowski, C. R. Yokley, D. E. Erminy, A. T. Hattenburg, NBS Report 9099, 1965.

Lee, R. D.

H. J. Kostkowski, R. D. Lee, in Temperature, Its Measurement and Control in Science and Industry, C. F. Herzfeld, Ed. (Reinhold Publishing Corp., New York, 1962) Vol. 3, Part 1, p. 449.

Lock, C.

D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

Lozier, W. W.

Ludwig, R.

J. Euler, R. Ludwig, Arbeitsmethoden der Optischen Pyrometrie (Verlag Braun, Karlsruhe, 1960).

MacPherson, H. G.

Magdeburg, H.

H. Magdeburg, Z. Naturforsch. 20a, 980 (1965).

Moser, H.

H. Moser, in Temperature, Its Measurement and Control in Science and Industry, C. F. Herzfeld, Ed. (Reinhold Publishing Corp., New York, 1962) Vol. 3, Part 1, p. 167.

Null, M. R.

Packer, D. M.

D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

Stimson, H. F.

H. F. Stimson, J. Res. Natl. Bur. Std. 65a, 139 (1961).
[CrossRef]

Yokley, C. R.

H. J. Kostkowski, C. R. Yokley, D. E. Erminy, A. T. Hattenburg, NBS Report 9099, 1965.

J. Opt. Soc. Am. (4)

H. G. MacPherson, J. Opt. Soc. Am. 30, 189 (1940).
[CrossRef]

D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

F. S. Johnson, J. Opt. Soc. Am. 46, 103 (1956).

M. R. Null, W. W. Lozier, J. Opt. Soc. Am. 52, 1156 (1962).
[CrossRef]

J. Res. Natl. Bur. Std. (1)

H. F. Stimson, J. Res. Natl. Bur. Std. 65a, 139 (1961).
[CrossRef]

Natl. Bur. Std. Tech. News Bull. (1)

Natl. Bur. Std. Tech. News Bull. 47, 175 (1963).

Trans. Am. Electrochem. Soc. (1)

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Am. Electrochem. Soc. 67, 107 (1935).
[CrossRef]

Z. Naturforsch. (1)

H. Magdeburg, Z. Naturforsch. 20a, 980 (1965).

Other (4)

H. J. Kostkowski, C. R. Yokley, D. E. Erminy, A. T. Hattenburg, NBS Report 9099, 1965.

H. J. Kostkowski, R. D. Lee, in Temperature, Its Measurement and Control in Science and Industry, C. F. Herzfeld, Ed. (Reinhold Publishing Corp., New York, 1962) Vol. 3, Part 1, p. 449.

J. Euler, R. Ludwig, Arbeitsmethoden der Optischen Pyrometrie (Verlag Braun, Karlsruhe, 1960).

H. Moser, in Temperature, Its Measurement and Control in Science and Industry, C. F. Herzfeld, Ed. (Reinhold Publishing Corp., New York, 1962) Vol. 3, Part 1, p. 167.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral radiance of the arc at the shorter wavelengths. The spectral band-pass varied from about 1.5 Å at 210 nm to 2 Å at 260 nm. The standard deviation uncertainties were about 5% to 3% at the short and long wavelengths, respectively.

Fig. 2
Fig. 2

Spectral radiance of the arc relative to a 3792°K (IPTS) blackbody. The spectral bandpass varied from about 2 Å at 260 nm to 3 Å at 345 nm. The standard deviation uncertainty was about 2.5% in this region.

Fig. 3
Fig. 3

Spectral radiance of the arc relative to a 3792°K (IPTS) blackbody. The spectral band-pass varied from 3 Å to 360 nm to 3.5 Å at 420 nm. The standard deviation uncertainty was about 2% in this region.

Fig. 4
Fig. 4

Spectral radiance of the arc relative to a 3792°K (IPTS) blackbody. The spectral bandpass was about 4 Å. The standard deviation uncertainty was about 2%.

Fig. 5
Fig. 5

Spectral radiance of the are relative to a 3792°K (IPTS) blackbody. The spectral bandpass was about 4 Å. The standard deviation uncertainty was about 2%.

Tables (2)

Tables Icon

Table I Spectral Radiance of the Graphite Arc at Selected Wavelengths a

Tables Icon

Table II Spectral Radiance of a 3792°K (IPTS) Blackbodya

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L λ T = L λ T Au ( L λ T / L λ T Au ) = L λ T Au ( L λ T / L λ T Au ) .
L λ T = L λ T [ exp ( c 2 / λ T Au ) - 1 exp ( c 2 / λ T Au ) - 1 ] .
L λ T ( TKTS ) = L λ T ( IPTS ) [ 1 + ( 0.616 × 10 - 6 / λ ) ] ,

Metrics