Abstract

A study has been made of quantitative analysis by a laser probe with spark excitation of the sample vapor. Random errors come largely from variations in laser energy and from photometric errors. The parameters of the spark circuit affect the line intensities; however, these factors are well controlled. Correlations have been established between the energy of the laser beam, the size of the pit formed, and spectral intensities. For most purposes, single-spike laser operation has been found to be preferable to multiple-spike operation. At present, the coefficients of variation for analysis are 15% to 40%.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Rasberry, B. F. Scribner, M. Margoshes, Appl. Opt. 6, 81 (1967).
    [Crossref] [PubMed]
  2. C. H. Corliss, Spectrochim. Acta 5, 378 (1953).
    [Crossref]
  3. R. E. Michaelis, H. Yakowitz, G. A. Moore, National Bureau of Standards Miscellaneous Publication 260-3 (1964).
  4. H. Piepmeier, H. V. Malmstadt, Paper 128, Fifth National Meeting, Society for Applied Spectroscopy, Chicago, June 1966 (Abstract).
  5. J. F. Ready, J. Appl. Phys. 36, 462 (1965).
    [Crossref]
  6. H. T. Yura, Rand Corporation Memorandum No. RM3560-PR (1963).
  7. G. A. Klotzbaugh, A. L. Wolfe, J. E. Paterson, T. A. Osial, Report to Air Force Cambridge Research Laboratories, Contract No. AF19 (628)-4184 (1965).

1967 (1)

1965 (1)

J. F. Ready, J. Appl. Phys. 36, 462 (1965).
[Crossref]

1964 (1)

R. E. Michaelis, H. Yakowitz, G. A. Moore, National Bureau of Standards Miscellaneous Publication 260-3 (1964).

1953 (1)

C. H. Corliss, Spectrochim. Acta 5, 378 (1953).
[Crossref]

Corliss, C. H.

C. H. Corliss, Spectrochim. Acta 5, 378 (1953).
[Crossref]

Klotzbaugh, G. A.

G. A. Klotzbaugh, A. L. Wolfe, J. E. Paterson, T. A. Osial, Report to Air Force Cambridge Research Laboratories, Contract No. AF19 (628)-4184 (1965).

Malmstadt, H. V.

H. Piepmeier, H. V. Malmstadt, Paper 128, Fifth National Meeting, Society for Applied Spectroscopy, Chicago, June 1966 (Abstract).

Margoshes, M.

Michaelis, R. E.

R. E. Michaelis, H. Yakowitz, G. A. Moore, National Bureau of Standards Miscellaneous Publication 260-3 (1964).

Moore, G. A.

R. E. Michaelis, H. Yakowitz, G. A. Moore, National Bureau of Standards Miscellaneous Publication 260-3 (1964).

Osial, T. A.

G. A. Klotzbaugh, A. L. Wolfe, J. E. Paterson, T. A. Osial, Report to Air Force Cambridge Research Laboratories, Contract No. AF19 (628)-4184 (1965).

Paterson, J. E.

G. A. Klotzbaugh, A. L. Wolfe, J. E. Paterson, T. A. Osial, Report to Air Force Cambridge Research Laboratories, Contract No. AF19 (628)-4184 (1965).

Piepmeier, H.

H. Piepmeier, H. V. Malmstadt, Paper 128, Fifth National Meeting, Society for Applied Spectroscopy, Chicago, June 1966 (Abstract).

Rasberry, S. D.

Ready, J. F.

J. F. Ready, J. Appl. Phys. 36, 462 (1965).
[Crossref]

Scribner, B. F.

Wolfe, A. L.

G. A. Klotzbaugh, A. L. Wolfe, J. E. Paterson, T. A. Osial, Report to Air Force Cambridge Research Laboratories, Contract No. AF19 (628)-4184 (1965).

Yakowitz, H.

R. E. Michaelis, H. Yakowitz, G. A. Moore, National Bureau of Standards Miscellaneous Publication 260-3 (1964).

Yura, H. T.

H. T. Yura, Rand Corporation Memorandum No. RM3560-PR (1963).

Appl. Opt. (1)

J. Appl. Phys. (1)

J. F. Ready, J. Appl. Phys. 36, 462 (1965).
[Crossref]

National Bureau of Standards Miscellaneous Publication 260-3 (1)

R. E. Michaelis, H. Yakowitz, G. A. Moore, National Bureau of Standards Miscellaneous Publication 260-3 (1964).

Spectrochim. Acta (1)

C. H. Corliss, Spectrochim. Acta 5, 378 (1953).
[Crossref]

Other (3)

H. Piepmeier, H. V. Malmstadt, Paper 128, Fifth National Meeting, Society for Applied Spectroscopy, Chicago, June 1966 (Abstract).

H. T. Yura, Rand Corporation Memorandum No. RM3560-PR (1963).

G. A. Klotzbaugh, A. L. Wolfe, J. E. Paterson, T. A. Osial, Report to Air Force Cambridge Research Laboratories, Contract No. AF19 (628)-4184 (1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Electronic system for measuring laser beam power as a function of time.

Fig. 2
Fig. 2

Multi-spike laser output. Scale 100 nsec per major horizontal grid division and 4 × 106 W per major vertical grid division.

Fig. 3
Fig. 3

Single-spike laser output. Scale 50 nsec per major horizontal grid division, and 4 × 106 W per major vertical grid division.

Fig. 4
Fig. 4

Pit volume as a function of laser output energy.

Fig. 5
Fig. 5

Pits produced in a steel sample by focused laser pulse. (A) Twenty pits made with multiple-spike operation at constant laser parameters. (B) Eight pits made with single-spike operation at constant laser parameters.

Fig. 6
Fig. 6

Spectral line intensity as a function of the number of exposures superimposed.

Fig. 7
Fig. 7

Spectral line intensity as a function of flashlamp voltage above threshold (energy). As the energy increases, each point on the curves corresponds to an additional spike in the laser output.

Fig. 8
Fig. 8

Typical analytical curves with four-spike laser vaporization and spark excitation.

Fig. 9
Fig. 9

Analytical curves comparing four-spike with single-spike vaporization, both with spark excitation.

Fig. 10
Fig. 10

The ratio of intensity ratios resulting from two types of excitation as a function of the ratio of the excitation energies for the line pair.

Tables (3)

Tables Icon

Table I Effect of Spark Parametersa

Tables Icon

Table II Precision of Intensity (% Coefficients of Variation) for Sets of Twelve Runs on NBS 461—At Constant Spark Parameters

Tables Icon

Table III Spectral Intensities and Crater Dimensions as a Function of Laser Energy

Metrics