Abstract

Accurate wavelength measurements of the pulsed laser emission from the nitrogen molecule have been made. About one hundred new stimulated emission lines which belong to the first and second positive systems were obtained and identified as to rotational quantum number. The relative intensities of the laser lines in the rotational band spectrum are analyzed. Some characteristics of the oscillations, including the recovery time after the laser pulse, are discussed.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. S. Mathias, J. T. Parker, Appl. Phys. Letters 3, 16 (1963).
    [CrossRef]
  2. H. G. Heard, Bull. Am. Phys. Soc. 9, 65 (1964); see also V. M. Kaslin, G. G. Petrash, JETP Letters 3, 55 (1966).
  3. A. Lofthus, Univ. of Oslo Spectroscopic Report2(1960).
  4. G. H. Dieke, D. F. Heath, Johns Hopkins Spectroscopic Report17 (1959).
  5. P. K. Carroll, Proc. Roy. Irish. Acad. 54, (A), 369 (1952).
  6. A. Guntsch, Z. Physik 86, 262 (1933).
    [CrossRef]
  7. A. Budó, Z. Physik 105, 579 (1937).
    [CrossRef]
  8. A. Budó, Z. Physik 96, 219 (1935).
    [CrossRef]
  9. P. A. Fraser, W. R. Jarmain, Proc. Phys. Soc. London A66, 1145 (1953).
  10. W. R. Jarmain, R. W. Nicholls, Can. J. Phys. 32, 201 (1954).
    [CrossRef]
  11. R. W. Nicholls, Can. J. Phys. 32, 722 (1954).
    [CrossRef]
  12. H. G. Cooper, P. K. Cheo, Appl. Phys. Letters 5, 44 (1964).
    [CrossRef]
  13. P. K. Cheo, H. G. Cooper, Appl. Phys. Letters 5, 42 (1963).
    [CrossRef]
  14. D. A. Leonard, Appl. Phys. Letters 7, 4 (1965).
    [CrossRef]
  15. E. T. Gerry, Appl. Phys. Letters 7, 6 (1965).
    [CrossRef]
  16. A. A. Vuylsteke, Elements of Maser Theory (D. Van Nostrand Co., Inc., Princeton, N.J., 1961).

1965

D. A. Leonard, Appl. Phys. Letters 7, 4 (1965).
[CrossRef]

E. T. Gerry, Appl. Phys. Letters 7, 6 (1965).
[CrossRef]

1964

H. G. Cooper, P. K. Cheo, Appl. Phys. Letters 5, 44 (1964).
[CrossRef]

H. G. Heard, Bull. Am. Phys. Soc. 9, 65 (1964); see also V. M. Kaslin, G. G. Petrash, JETP Letters 3, 55 (1966).

1963

L. E. S. Mathias, J. T. Parker, Appl. Phys. Letters 3, 16 (1963).
[CrossRef]

P. K. Cheo, H. G. Cooper, Appl. Phys. Letters 5, 42 (1963).
[CrossRef]

1954

W. R. Jarmain, R. W. Nicholls, Can. J. Phys. 32, 201 (1954).
[CrossRef]

R. W. Nicholls, Can. J. Phys. 32, 722 (1954).
[CrossRef]

1953

P. A. Fraser, W. R. Jarmain, Proc. Phys. Soc. London A66, 1145 (1953).

1952

P. K. Carroll, Proc. Roy. Irish. Acad. 54, (A), 369 (1952).

1937

A. Budó, Z. Physik 105, 579 (1937).
[CrossRef]

1935

A. Budó, Z. Physik 96, 219 (1935).
[CrossRef]

1933

A. Guntsch, Z. Physik 86, 262 (1933).
[CrossRef]

Budó, A.

A. Budó, Z. Physik 105, 579 (1937).
[CrossRef]

A. Budó, Z. Physik 96, 219 (1935).
[CrossRef]

Carroll, P. K.

P. K. Carroll, Proc. Roy. Irish. Acad. 54, (A), 369 (1952).

Cheo, P. K.

H. G. Cooper, P. K. Cheo, Appl. Phys. Letters 5, 44 (1964).
[CrossRef]

P. K. Cheo, H. G. Cooper, Appl. Phys. Letters 5, 42 (1963).
[CrossRef]

Cooper, H. G.

H. G. Cooper, P. K. Cheo, Appl. Phys. Letters 5, 44 (1964).
[CrossRef]

P. K. Cheo, H. G. Cooper, Appl. Phys. Letters 5, 42 (1963).
[CrossRef]

Dieke, G. H.

G. H. Dieke, D. F. Heath, Johns Hopkins Spectroscopic Report17 (1959).

Fraser, P. A.

P. A. Fraser, W. R. Jarmain, Proc. Phys. Soc. London A66, 1145 (1953).

Gerry, E. T.

E. T. Gerry, Appl. Phys. Letters 7, 6 (1965).
[CrossRef]

Guntsch, A.

A. Guntsch, Z. Physik 86, 262 (1933).
[CrossRef]

Heard, H. G.

H. G. Heard, Bull. Am. Phys. Soc. 9, 65 (1964); see also V. M. Kaslin, G. G. Petrash, JETP Letters 3, 55 (1966).

Heath, D. F.

G. H. Dieke, D. F. Heath, Johns Hopkins Spectroscopic Report17 (1959).

Jarmain, W. R.

W. R. Jarmain, R. W. Nicholls, Can. J. Phys. 32, 201 (1954).
[CrossRef]

P. A. Fraser, W. R. Jarmain, Proc. Phys. Soc. London A66, 1145 (1953).

Leonard, D. A.

D. A. Leonard, Appl. Phys. Letters 7, 4 (1965).
[CrossRef]

Lofthus, A.

A. Lofthus, Univ. of Oslo Spectroscopic Report2(1960).

Mathias, L. E. S.

L. E. S. Mathias, J. T. Parker, Appl. Phys. Letters 3, 16 (1963).
[CrossRef]

Nicholls, R. W.

W. R. Jarmain, R. W. Nicholls, Can. J. Phys. 32, 201 (1954).
[CrossRef]

R. W. Nicholls, Can. J. Phys. 32, 722 (1954).
[CrossRef]

Parker, J. T.

L. E. S. Mathias, J. T. Parker, Appl. Phys. Letters 3, 16 (1963).
[CrossRef]

Vuylsteke, A. A.

A. A. Vuylsteke, Elements of Maser Theory (D. Van Nostrand Co., Inc., Princeton, N.J., 1961).

Appl. Phys. Letters

L. E. S. Mathias, J. T. Parker, Appl. Phys. Letters 3, 16 (1963).
[CrossRef]

H. G. Cooper, P. K. Cheo, Appl. Phys. Letters 5, 44 (1964).
[CrossRef]

P. K. Cheo, H. G. Cooper, Appl. Phys. Letters 5, 42 (1963).
[CrossRef]

D. A. Leonard, Appl. Phys. Letters 7, 4 (1965).
[CrossRef]

E. T. Gerry, Appl. Phys. Letters 7, 6 (1965).
[CrossRef]

Bull. Am. Phys. Soc.

H. G. Heard, Bull. Am. Phys. Soc. 9, 65 (1964); see also V. M. Kaslin, G. G. Petrash, JETP Letters 3, 55 (1966).

Can. J. Phys.

W. R. Jarmain, R. W. Nicholls, Can. J. Phys. 32, 201 (1954).
[CrossRef]

R. W. Nicholls, Can. J. Phys. 32, 722 (1954).
[CrossRef]

Proc. Phys. Soc. London

P. A. Fraser, W. R. Jarmain, Proc. Phys. Soc. London A66, 1145 (1953).

Proc. Roy. Irish. Acad.

P. K. Carroll, Proc. Roy. Irish. Acad. 54, (A), 369 (1952).

Z. Physik

A. Guntsch, Z. Physik 86, 262 (1933).
[CrossRef]

A. Budó, Z. Physik 105, 579 (1937).
[CrossRef]

A. Budó, Z. Physik 96, 219 (1935).
[CrossRef]

Other

A. Lofthus, Univ. of Oslo Spectroscopic Report2(1960).

G. H. Dieke, D. F. Heath, Johns Hopkins Spectroscopic Report17 (1959).

A. A. Vuylsteke, Elements of Maser Theory (D. Van Nostrand Co., Inc., Princeton, N.J., 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Stimulated emission spectrum of the nitrogen molecule. (a) v = 1 → 0, (b) v = 2 → 1, (c) v = 3 → 1, (d) v = 4 → 2 of B3πgA3u+, and (e) v = 0 → 0 of C3πuB3πg. The photographic exposures are on the order of 104, 103, and 102 pulses for (a)(b), (c)(d), and (e), respectively.

Fig. 2
Fig. 2

Fortrat diagram of stimulated emission spectrum. (a) v = 1 → 0, (b) v = 2 → 1, (c) v = 4 → 2, (d) v = 0 → 0 of B3πgA3u+, and (e) v = 0 → 0 of C3πuB3πg. The laser oscillations are denoted by circles in the diagram. Only the branches observed in the laser oscillations are shown in these diagrams except in (c) (see facing page).

Fig. 3
Fig. 3

An example of the variation of the intensity factor i as a function of K for v = 1 → 0, B3πgA3u+. (a) satellite branches, (b) main branches.

Fig. 4
Fig. 4

Variation of j(K)/gI as a function of K for v = 1 → 0, B3πgA3u+. The lasing transitions of odd and even K are denoted by open and solid circles, respectively. The rotational temperature for the v = 1 state used in this calculation is 325°K. (a) satellite branches, (b) main branches.

Fig. 5
Fig. 5

Variation of j(K)/gI as a function of K for v = 4 → 2, B3πgA3u+. The lasing transitions are denoted by circles. The rotational temperature for the v = 4 state used in this calculation is 312°K. (a) satellite branches, (b) main branches.

Fig. 6
Fig. 6

Relative population of v = 1,2,3 and 4 states of B3πg.

Fig. 7
Fig. 7

Dependence of the observed relative intensities of emission lines on j(k) for v = 1 → 0, B3πgA3u+.

Fig. 8
Fig. 8

An example of a chart record of the stimulated emission spectra for v = 1 → 0, B3πgA3u+. The line width is limited by the slit width of the monochromator (approximately 0.7 cm−1).

Fig. 9
Fig. 9

Variation of the relative intensities of emission lines with the applied electric field. (a) 2 → 1, (b) 0 → 0, (c) 3 → 1 of B3πgA3u+, and (d) 0 → 0 of C3πuB3πg.

Fig. 10
Fig. 10

Dependence of the threshold electric field for oscillation on gas pressure.

Fig. 11
Fig. 11

Dependence of the optimum applied field (for maximum intensity) on gas pressure.

Fig. 12
Fig. 12

Variation of the laser intensity (per pulse) with the pulse repetition frequency.

Fig. 13
Fig. 13

Intensity of the second laser pulse as a function of double-pulse separation, where the excitation pulse width is 0.25 μsec, the gas pressure is 4.5 mm Hg, and the bore of the discharge tube is 2 mm.

Fig. 14
Fig. 14

Relation between the recovery time and j(K) values.

Fig. 15
Fig. 15

Variation of function h(s) with β at γ = 1.

Fig. 16
Fig. 16

Variation of function h(s) with γ at β = 0.3.

Tables (3)

Tables Icon

Table I Stimulated Emission Lines of the First Positive System B3ΠgA3u+

Tables Icon

Table II Stimulated Emission Lines of the Second Positive System C3ΠuB3Πg, v = 0 → 0

Tables Icon

Table III Expected Branches of the First Positive Group

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

j ( K ) = g I i ( K ) exp ( - E r / k T )
j ( K ) R
j ( K ) < R
d x 1 d t = n - i 1 t i + x i - ( 1 + g 2 / g 1 ) x 1 z 2 t 0
d x 2 d t = n - i 1 t i - x i - ( 1 - g 2 / g 1 ) x 1 z 2 t 0
d z d t = x 1 z t 0 + n 1 t 0 x n - 1 T d z .
x n = N 2 + ( - 1 ) n ( g 2 / g 1 ) N 1 2 / t n ± = 1 / T 2 ( - 1 ) n / T 1 ± ( g 2 / g 1 ) / T 21 ,
n = n 0 [ 1 - exp ( - t / τ ) ] .
( d d t + 1 T 1 ) ( d d t + 1 T 2 ) x 10 = ( d d t - 1 T 21 + 1 T 1 ) n ,
Δ x 1 x 1 - x 10 - z ( s ) - s F ( s , s ) z ( s ) d s G ( s , s ) = 1 2 T d γ { ( γ - β ) + ( γ + β ) e γ ( s - s ) } .
x 10 = N h ( s ) , h ( s ) = ( 1 + β ) 1 γ - 1 ( 1 - e - s ) - 1 γ ( γ - 1 ) ( 1 + β γ ) ( 1 - e - γ s ) - β s γ ,
h ( s 1 ) = t 0 / N T d .
h ( s 1 ) - ( β / γ ) s p exp ( - t r / T 1 ) = t 0 / N T d ,
( t r ) threshold T 1 log 6 β s p / γ 3 s p 2 - ( 1 + β + γ ) s p 3 - 6 t 0 / N T d .

Metrics