Abstract

Electron synchrotrons are becoming increasingly important as sources of extreme uv radiation for physical experiments. The NBS 180-MeV machine has been utilized for gas absorption studies over a four-year period, during which a 3-m grazing incidence spectrograph and monochromator have been designed, constructed and put into operation. The instruments are extremely stable to vibration and temperature variation, and are operating with a slit limited resolution of the order of 0.06 Å. The design principles and features of these instruments are described, and a highly successful prealignment procedure for grazing incidence spectrometers is outlined. The effect of the unusual characteristics of this light source on the illumination and performance of the spectroscopic instruments is discussed.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Codling, R. P. Madden, J. Appl. Phys. 36, 380 (1965) and references therein.
    [CrossRef]
  2. D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
    [CrossRef]
  3. R. P. Madden, K. Codling, Phys. Rev. Letters 10, 516 (1963).
    [CrossRef]
  4. R. P. Madden, K. Codling, Astrophys. J. 141, 364 (1965).
    [CrossRef]
  5. K. Codling, R. P. Madden, J. Chem. Phys. 42, 3935 (1965).
    [CrossRef]
  6. K. Codling, Astrophys. J. 143, 552 (1966).
    [CrossRef]
  7. D. L. Ederer, R. P. Madden, J. Opt. Soc. Am. 56, 552 (1966).
  8. P. Jaegle, Accademia Natzionale dei Lincei 40, 258 (1966); P. Jaegle, Guido Missoni, Compt. Rend. 262, 71 (1966); Y. Cauchois, C. Bonnelle, G. Missoni, Compt. Rend. 257, 409 (1963).
  9. T. Sasaki, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, Paris, 1965, F. Abeles, Ed. (North Holland Publishing Co., Amsterdam, 1966) p. 417.
  10. W. Steinmann, M. Skibowski, Phys. Rev. Letters 16, 989 (1966); R. Haensel, thesis, U. of Hamburg (1966).
    [CrossRef]
  11. M. Olsen, Kgl. Norske Vidensk. Selsk. Skr., No. 5 (1952).
  12. J. Schwinger, Phys. Rev. 75, 1912 (1949).
    [CrossRef]
  13. L. Landau, E. Lifshitz, The Classical Theory of Fields (Addison-Wesley Publishing Company, Reading, Mass., 1951), pp. 213–218.
  14. M. Neuman, Phys. Rev. 90, 682 (1953).
    [CrossRef]
  15. P. H. van Cittert, Zeit. Phys. 65, 547 (1930); Zeit. Phys. 69, 298 (1931).
    [CrossRef]

1966 (4)

K. Codling, Astrophys. J. 143, 552 (1966).
[CrossRef]

D. L. Ederer, R. P. Madden, J. Opt. Soc. Am. 56, 552 (1966).

P. Jaegle, Accademia Natzionale dei Lincei 40, 258 (1966); P. Jaegle, Guido Missoni, Compt. Rend. 262, 71 (1966); Y. Cauchois, C. Bonnelle, G. Missoni, Compt. Rend. 257, 409 (1963).

W. Steinmann, M. Skibowski, Phys. Rev. Letters 16, 989 (1966); R. Haensel, thesis, U. of Hamburg (1966).
[CrossRef]

1965 (3)

K. Codling, R. P. Madden, J. Appl. Phys. 36, 380 (1965) and references therein.
[CrossRef]

R. P. Madden, K. Codling, Astrophys. J. 141, 364 (1965).
[CrossRef]

K. Codling, R. P. Madden, J. Chem. Phys. 42, 3935 (1965).
[CrossRef]

1963 (1)

R. P. Madden, K. Codling, Phys. Rev. Letters 10, 516 (1963).
[CrossRef]

1956 (1)

D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
[CrossRef]

1953 (1)

M. Neuman, Phys. Rev. 90, 682 (1953).
[CrossRef]

1952 (1)

M. Olsen, Kgl. Norske Vidensk. Selsk. Skr., No. 5 (1952).

1949 (1)

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[CrossRef]

1930 (1)

P. H. van Cittert, Zeit. Phys. 65, 547 (1930); Zeit. Phys. 69, 298 (1931).
[CrossRef]

Codling, K.

K. Codling, Astrophys. J. 143, 552 (1966).
[CrossRef]

K. Codling, R. P. Madden, J. Appl. Phys. 36, 380 (1965) and references therein.
[CrossRef]

R. P. Madden, K. Codling, Astrophys. J. 141, 364 (1965).
[CrossRef]

K. Codling, R. P. Madden, J. Chem. Phys. 42, 3935 (1965).
[CrossRef]

R. P. Madden, K. Codling, Phys. Rev. Letters 10, 516 (1963).
[CrossRef]

Ederer, D. L.

D. L. Ederer, R. P. Madden, J. Opt. Soc. Am. 56, 552 (1966).

Hartman, P. L.

D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
[CrossRef]

Jaegle, P.

P. Jaegle, Accademia Natzionale dei Lincei 40, 258 (1966); P. Jaegle, Guido Missoni, Compt. Rend. 262, 71 (1966); Y. Cauchois, C. Bonnelle, G. Missoni, Compt. Rend. 257, 409 (1963).

Landau, L.

L. Landau, E. Lifshitz, The Classical Theory of Fields (Addison-Wesley Publishing Company, Reading, Mass., 1951), pp. 213–218.

Lifshitz, E.

L. Landau, E. Lifshitz, The Classical Theory of Fields (Addison-Wesley Publishing Company, Reading, Mass., 1951), pp. 213–218.

Madden, R. P.

D. L. Ederer, R. P. Madden, J. Opt. Soc. Am. 56, 552 (1966).

K. Codling, R. P. Madden, J. Appl. Phys. 36, 380 (1965) and references therein.
[CrossRef]

R. P. Madden, K. Codling, Astrophys. J. 141, 364 (1965).
[CrossRef]

K. Codling, R. P. Madden, J. Chem. Phys. 42, 3935 (1965).
[CrossRef]

R. P. Madden, K. Codling, Phys. Rev. Letters 10, 516 (1963).
[CrossRef]

Neuman, M.

M. Neuman, Phys. Rev. 90, 682 (1953).
[CrossRef]

Olsen, M.

M. Olsen, Kgl. Norske Vidensk. Selsk. Skr., No. 5 (1952).

Sasaki, T.

T. Sasaki, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, Paris, 1965, F. Abeles, Ed. (North Holland Publishing Co., Amsterdam, 1966) p. 417.

Schwinger, J.

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[CrossRef]

Skibowski, M.

W. Steinmann, M. Skibowski, Phys. Rev. Letters 16, 989 (1966); R. Haensel, thesis, U. of Hamburg (1966).
[CrossRef]

Steinmann, W.

W. Steinmann, M. Skibowski, Phys. Rev. Letters 16, 989 (1966); R. Haensel, thesis, U. of Hamburg (1966).
[CrossRef]

Tomboulian, D. H.

D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
[CrossRef]

van Cittert, P. H.

P. H. van Cittert, Zeit. Phys. 65, 547 (1930); Zeit. Phys. 69, 298 (1931).
[CrossRef]

Accademia Natzionale dei Lincei (1)

P. Jaegle, Accademia Natzionale dei Lincei 40, 258 (1966); P. Jaegle, Guido Missoni, Compt. Rend. 262, 71 (1966); Y. Cauchois, C. Bonnelle, G. Missoni, Compt. Rend. 257, 409 (1963).

Astrophys. J. (2)

K. Codling, Astrophys. J. 143, 552 (1966).
[CrossRef]

R. P. Madden, K. Codling, Astrophys. J. 141, 364 (1965).
[CrossRef]

J. Appl. Phys. (1)

K. Codling, R. P. Madden, J. Appl. Phys. 36, 380 (1965) and references therein.
[CrossRef]

J. Chem. Phys. (1)

K. Codling, R. P. Madden, J. Chem. Phys. 42, 3935 (1965).
[CrossRef]

J. Opt. Soc. Am. (1)

D. L. Ederer, R. P. Madden, J. Opt. Soc. Am. 56, 552 (1966).

Kgl. Norske Vidensk. Selsk. Skr. (1)

M. Olsen, Kgl. Norske Vidensk. Selsk. Skr., No. 5 (1952).

Phys. Rev. (3)

J. Schwinger, Phys. Rev. 75, 1912 (1949).
[CrossRef]

M. Neuman, Phys. Rev. 90, 682 (1953).
[CrossRef]

D. H. Tomboulian, P. L. Hartman, Phys. Rev. 102, 1423 (1956).
[CrossRef]

Phys. Rev. Letters (2)

R. P. Madden, K. Codling, Phys. Rev. Letters 10, 516 (1963).
[CrossRef]

W. Steinmann, M. Skibowski, Phys. Rev. Letters 16, 989 (1966); R. Haensel, thesis, U. of Hamburg (1966).
[CrossRef]

Zeit. Phys. (1)

P. H. van Cittert, Zeit. Phys. 65, 547 (1930); Zeit. Phys. 69, 298 (1931).
[CrossRef]

Other (2)

L. Landau, E. Lifshitz, The Classical Theory of Fields (Addison-Wesley Publishing Company, Reading, Mass., 1951), pp. 213–218.

T. Sasaki, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, Paris, 1965, F. Abeles, Ed. (North Holland Publishing Co., Amsterdam, 1966) p. 417.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Power radiated into each component of polarization as a function of observation angle measured to the orbital plane, for a monoenergetic electron (electron energy = 180 MeV, λ = 500 Å) ||, component parallel to orbital plane; ⊥, component perpendicular to orbital plane.

Fig. 2
Fig. 2

Universal spectral distribution curve for the radiation from monoenergetic electrons (integrated over all angles) as a function of reduced wavelength. The maximum occurs at λ/λc = 0.42.

Fig. 3
Fig. 3

Schematic diagram of the 3-m grazing incidence spectrograph. The lettered components are as follows: (S) slit, (J) slit plate locating balls, (G) grating holder, (H) support beams, (P) photographic plate holder, and (Pp) photographic plate.

Fig. 4
Fig. 4

The grating holder for the monochromator and spectrograph shown in an exploded view. The labeled components, described in the text, are (G) grating (600 lines/mm replica), (K) front surface mounting screws, and (W) grating ruling fine adjustment.

Fig. 5
Fig. 5

(a) A microdensitometer trace of higher members of the 3s3p6np1P1 series of window-type resonance in argon starting at the n = 9 member. A resolution of 0.06 Å is achieved (pressure = 0.02 torr, path length = 100 cm, and exposure time = 45 min with SWR plates). (b) A recorder trace taken with the monochromator of the same series in argon starting with the n = 10 member (pressure = 0.02 torr, path length = 100 cm, scan speed = 0.14 Å/min, electronics time constant = 2 sec, and counting rate at minimum transmission ≈ 100 counts/sec.)

Fig. 6
Fig. 6

A schematic view of the 3-m grazing incidence monochromator.

Fig. 7
Fig. 7

Details of the detector carriage and drive shown in section and schematically. The detector carriage (C) and slit (S) are supported by bearings (Ba) (Bb) and (Bc), which slide on Rowland rail (R). The drive for the carriage consists of a nut (V) constrained by a dovetail (D) driven by a screw (U). A plate (F), attached to the nut, drives the carriage through a ball (E).

Fig. 8
Fig. 8

Two methods of illuminating the spectrometer are shown. Case I: the entrance slit (S) of the grazing incidence spectrometer is illuminated directly by the synchrotron light from the electron beam width B. Case II: indirect illumination; a concave mirror (M), whose focal length is adjusted to fill the grating, illuminates the entrance slit (S) of the spectrograph.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ = ( m 0 c 2 / E ) ,
P ¯ ( λ ) = ( 3 5 / 2 / 8 π 3 ) ( e 2 c / 3 ) ( E / m 0 c 2 ) 7 G ( λ / λ c ) ,
λ c = ( 4 π / 3 ) ( m 0 c 2 / E ) 3 .
P total = 2 / 3 ( e 2 c / 2 ) ( E / m 0 c 2 ) 4 ( v / c ) 4 ,
N ( λ ) = n × f × F × P ¯ ( λ ) ,
F I = ( S / 2 π D 1 ) ,
F II = ( S M W / 2 π B R ) .
( F II / F I ) = ( D 1 M W / B R ) .
( F II / F I ) 17 M .
( r 1 + r 2 ) H / R ,

Metrics