Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Natl. Bur. Std. 67A, 363 (1963). Except when specified otherwise, the same notation as this reference is used.
    [CrossRef]
  2. The values for n1, n3, ϕ1, and ρare given in Table 6, p. 376, of Ref. 1. The value for λ is given on p. 366 of Ref. 1.
  3. It would probably be the exception, rather than the rule, to find more than one physically meaningful root of Eqs. (6a) and (6b). In specific cases, it has been shown that, for n1, n3, ϕ1at fixed values, a given value of ρcan be obtained only with a single, unique value of n2. See, for example, O. S. Heavens, in Physics of Thin Films, G. Hass, R. Thun, Eds. (Academic Press, New York and London, 1964), p. 224; and R. J. Archer, J. Opt. Soc. Am. 52, 970 (1962).
    [CrossRef]

1963 (1)

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Natl. Bur. Std. 67A, 363 (1963). Except when specified otherwise, the same notation as this reference is used.
[CrossRef]

Heavens, O. S.

It would probably be the exception, rather than the rule, to find more than one physically meaningful root of Eqs. (6a) and (6b). In specific cases, it has been shown that, for n1, n3, ϕ1at fixed values, a given value of ρcan be obtained only with a single, unique value of n2. See, for example, O. S. Heavens, in Physics of Thin Films, G. Hass, R. Thun, Eds. (Academic Press, New York and London, 1964), p. 224; and R. J. Archer, J. Opt. Soc. Am. 52, 970 (1962).
[CrossRef]

McCrackin, F. L.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Natl. Bur. Std. 67A, 363 (1963). Except when specified otherwise, the same notation as this reference is used.
[CrossRef]

Passaglia, E.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Natl. Bur. Std. 67A, 363 (1963). Except when specified otherwise, the same notation as this reference is used.
[CrossRef]

Steinberg, H. L.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Natl. Bur. Std. 67A, 363 (1963). Except when specified otherwise, the same notation as this reference is used.
[CrossRef]

Stromberg, R. R.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Natl. Bur. Std. 67A, 363 (1963). Except when specified otherwise, the same notation as this reference is used.
[CrossRef]

J. Res. Natl. Bur. Std. (1)

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Natl. Bur. Std. 67A, 363 (1963). Except when specified otherwise, the same notation as this reference is used.
[CrossRef]

Other (2)

The values for n1, n3, ϕ1, and ρare given in Table 6, p. 376, of Ref. 1. The value for λ is given on p. 366 of Ref. 1.

It would probably be the exception, rather than the rule, to find more than one physically meaningful root of Eqs. (6a) and (6b). In specific cases, it has been shown that, for n1, n3, ϕ1at fixed values, a given value of ρcan be obtained only with a single, unique value of n2. See, for example, O. S. Heavens, in Physics of Thin Films, G. Hass, R. Thun, Eds. (Academic Press, New York and London, 1964), p. 224; and R. J. Archer, J. Opt. Soc. Am. 52, 970 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table I Partial Error Analysis

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

exp D = f ( n 1 , n 2 , n 3 , ϕ 1 , ρ ) .
f + = [ - C 2 + ( C 2 2 - 4 C 1 C 3 ) ½ ] / 2 C 1 ,
f - = [ - C 2 - ( C 2 2 - 4 C 1 C 3 ) ½ ] / 2 C 1 ,
C 1 = ρ r 12 s r 12 p r 23 p - r 23 p r 12 s r 23 s ,
C 2 = ρ ( r 23 s + r 12 s r 12 p r 23 p ) - ( r 23 p + r 12 p r 12 s r 23 s ) ,
C 3 = ρ r 12 3 - r 12 p .
f ( n 1 , n 2 , n 3 , ϕ 1 , ρ ) - 1 = 0.
F + ( n 2 ) = f + - 1 ,
F - ( n 2 ) = f - - 1 ,
F + ( n 2 ) = 0 ,
F - ( n 2 ) = 0.
cos D = g , sin D = h .
D = tan - 1 ( h / g ) + 2 m Π ,
d = d 0 + m × Δ d ,
d 0 = λ tan - 1 ( h / g ) / [ 4 Π ( n 2 2 - n 1 2 sin 2 ϕ 1 ) ] ½ ,
Δ d = ( λ / 2 ) ( n 2 2 - n 1 2 sin 2 ϕ 1 ) - ½ .

Metrics