Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Engstrom, J. Opt. Soc. Am. 37, 420 (1947).
    [CrossRef]
  2. R. J. Ginther, J. Electrochem. Soc. 101, 248 (1954).
    [CrossRef]
  3. R. Leach, J. Electrochem. Soc. 105, 27 (1958).
    [CrossRef]
  4. B. L. Danielson, Phys. Rev. 142, 228 (1966).
    [CrossRef]
  5. A. E. Siegman, Appl. Opt. 1, 739 (1962).
    [CrossRef]
  6. G. S. Uebele, Inst. Radio Engrs. Trans. MTT-7, 18 (1959).
  7. R. W. Degrasse, J. Appl. Phys. 30, 155S (1959).
    [CrossRef]
  8. J. Clark, J. Brown, J. Appl. Phys. 33, 1270 (1962).
    [CrossRef]
  9. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
    [CrossRef]
  10. H. Guggenheim, J. Appl. Phys. 34, 2482 (1963).
    [CrossRef]
  11. D. C. Stockbarger, J. Opt. Soc. Am. 39, 731 (1949).
    [CrossRef] [PubMed]
  12. R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
    [CrossRef]

1966 (1)

B. L. Danielson, Phys. Rev. 142, 228 (1966).
[CrossRef]

1963 (1)

H. Guggenheim, J. Appl. Phys. 34, 2482 (1963).
[CrossRef]

1962 (2)

J. Clark, J. Brown, J. Appl. Phys. 33, 1270 (1962).
[CrossRef]

A. E. Siegman, Appl. Opt. 1, 739 (1962).
[CrossRef]

1959 (2)

G. S. Uebele, Inst. Radio Engrs. Trans. MTT-7, 18 (1959).

R. W. Degrasse, J. Appl. Phys. 30, 155S (1959).
[CrossRef]

1958 (1)

R. Leach, J. Electrochem. Soc. 105, 27 (1958).
[CrossRef]

1957 (1)

R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
[CrossRef]

1954 (1)

R. J. Ginther, J. Electrochem. Soc. 101, 248 (1954).
[CrossRef]

1953 (1)

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

1949 (1)

1947 (1)

Brown, J.

J. Clark, J. Brown, J. Appl. Phys. 33, 1270 (1962).
[CrossRef]

Clark, J.

J. Clark, J. Brown, J. Appl. Phys. 33, 1270 (1962).
[CrossRef]

Danielson, B. L.

B. L. Danielson, Phys. Rev. 142, 228 (1966).
[CrossRef]

Degrasse, R. W.

R. W. Degrasse, J. Appl. Phys. 30, 155S (1959).
[CrossRef]

Dexter, D. L.

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

Engstrom, R. W.

R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
[CrossRef]

R. W. Engstrom, J. Opt. Soc. Am. 37, 420 (1947).
[CrossRef]

Fischer, E.

R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
[CrossRef]

Ginther, R. J.

R. J. Ginther, J. Electrochem. Soc. 101, 248 (1954).
[CrossRef]

Guggenheim, H.

H. Guggenheim, J. Appl. Phys. 34, 2482 (1963).
[CrossRef]

Leach, R.

R. Leach, J. Electrochem. Soc. 105, 27 (1958).
[CrossRef]

Siegman, A. E.

Stockbarger, D. C.

Uebele, G. S.

G. S. Uebele, Inst. Radio Engrs. Trans. MTT-7, 18 (1959).

Appl. Opt. (1)

Inst. Radio Engrs. Trans. (1)

G. S. Uebele, Inst. Radio Engrs. Trans. MTT-7, 18 (1959).

J. Appl. Phys. (3)

R. W. Degrasse, J. Appl. Phys. 30, 155S (1959).
[CrossRef]

J. Clark, J. Brown, J. Appl. Phys. 33, 1270 (1962).
[CrossRef]

H. Guggenheim, J. Appl. Phys. 34, 2482 (1963).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

J. Electrochem. Soc. (2)

R. J. Ginther, J. Electrochem. Soc. 101, 248 (1954).
[CrossRef]

R. Leach, J. Electrochem. Soc. 105, 27 (1958).
[CrossRef]

J. Opt. Soc. Am. (2)

Phys. Rev. (1)

B. L. Danielson, Phys. Rev. 142, 228 (1966).
[CrossRef]

Rev. Sci. Instr. (1)

R. W. Engstrom, E. Fischer, Rev. Sci. Instr. 28, 525 (1957).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic representation of the optical power limiter. The radiation of frequency νo is monitored by the saturable phosphor CaF2(Ce, Mn). The crystal is optically thin to the incident beam and fluoresces at the Stokes-shifted frequency νa.

Fig. 2
Fig. 2

Normalized activator emission [Ja(∞)]/[Ja(∞)]max as a function of incident intensity Io showing the saturation effect. The points represent data taken with a Hg arc lamp.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q = Q 0 [ 1 - n a * / n a ] ,
N s d d t n a * ( t ) = [ N s Q σ 0 η 0 I ( t ) / h ν 0 ] - [ N s n a * ( t ) ] / T a .
J a ( t ) = [ J a ( ) ] max N s Q 0 σ 0 η 0 I 0 { 1 - exp t / τ } h ν 0 [ J a ( ) ] max + N s Q 0 σ 0 η 0 I 0 ,
1 τ = 1 T a { 1 + N s Q 0 σ 0 η 0 I 0 [ J a ( ) ] max h ν 0 }
[ J a ( ) ] max N s n a / T a .

Metrics