Abstract

A theoretical development has been applied to vidicon and orthicon types of image tubes which is similar to that used for ir photodetectors. In essence, a differential equation applicable to these image tubes has been used to obtain exact solutions for signal and noise. These expressions account for factors such as storage, frequency response, resolution, and efficiency. They can be inserted into the usual definitions of noise equivalent power, detectivity star, and detective quantum efficiency to provide exact expressions indicating the dependence of these quantities on basic factors governing tube generation. Experimental procedures are proposed for making signal and noise measurements which provide information directly comparable to those for photodetectors.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nudelman, Appl. Opt. 1, 627 (1962).
    [CrossRef]
  2. S. Nudelman, Appl. Opt. 5, 1925 (1966).
    [CrossRef] [PubMed]
  3. Proceedings of International Symposium on Electromagnetic Sensing of the Earth from. Satellites (Polytechnic Institute of Brooklyn Press, New York, 1966).
  4. O. H. Schade, RCA Rev. 9, Part II, 245 (1948).
  5. R. Thiele, in Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1960), Vol. 12, p. 263.
    [CrossRef]
  6. E. F. DeHaan, Ref. 5, p. 277.
  7. J. W. Coltman, J. Opt. Soc. Am. 44, 468 (1954).
    [CrossRef]
  8. R. C. Jones, Proc. Inst. Radio Engr. 47, 1495 (1958).
  9. R. C. Jones, in Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1959), Vol. 11, p. 94.
  10. P. J. Daly, Proc. IRIS 8, 51 (1963).
  11. K. Lark-Hanovitz, V. A. Johnson, L. Martens, Eds., Methods of Experimental Physics, (Academic Press, New York, 1959), Vol. 6B, p. 352.

1966

1963

P. J. Daly, Proc. IRIS 8, 51 (1963).

1962

1958

R. C. Jones, Proc. Inst. Radio Engr. 47, 1495 (1958).

1954

1948

O. H. Schade, RCA Rev. 9, Part II, 245 (1948).

Coltman, J. W.

Daly, P. J.

P. J. Daly, Proc. IRIS 8, 51 (1963).

DeHaan, E. F.

E. F. DeHaan, Ref. 5, p. 277.

Jones, R. C.

R. C. Jones, Proc. Inst. Radio Engr. 47, 1495 (1958).

R. C. Jones, in Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1959), Vol. 11, p. 94.

Nudelman, S.

Schade, O. H.

O. H. Schade, RCA Rev. 9, Part II, 245 (1948).

Thiele, R.

R. Thiele, in Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1960), Vol. 12, p. 263.
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Proc. Inst. Radio Engr.

R. C. Jones, Proc. Inst. Radio Engr. 47, 1495 (1958).

Proc. IRIS

P. J. Daly, Proc. IRIS 8, 51 (1963).

RCA Rev.

O. H. Schade, RCA Rev. 9, Part II, 245 (1948).

Other

R. Thiele, in Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1960), Vol. 12, p. 263.
[CrossRef]

E. F. DeHaan, Ref. 5, p. 277.

R. C. Jones, in Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1959), Vol. 11, p. 94.

K. Lark-Hanovitz, V. A. Johnson, L. Martens, Eds., Methods of Experimental Physics, (Academic Press, New York, 1959), Vol. 6B, p. 352.

Proceedings of International Symposium on Electromagnetic Sensing of the Earth from. Satellites (Polytechnic Institute of Brooklyn Press, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of photoconductor film exhibiting carrier model for signal generation.

Fig. 2
Fig. 2

Relative line number (N/). 1. S 1 = 1 2 [ J 0 ( z 1 ) + J 2 ( z 1 ) + J 0 ( z 2 ) = J 2 ( z 2 ) ]. 2. S = J0(z) + J2(z). 3. E = [1 + (πN/)2]−1/2. 4. S1 × E. 5. S × E. Note: N is the television line number (counting black and white). is the line number when a line width is equal to the diameter of a resolution element.

Fig. 3
Fig. 3

Relative line number (N/). 1. S1. 2. S. 3. E. 4. S1 × E. 5. S × E. 6. RCA 8521. x: estimated correction points to curve 6 for sine wave response.

Equations (68)

Equations on this page are rendered with MathJax. Learn more.

P = x J 0 ,
I s = A H γ
l n I s = γ l n H + l n A ,
J = J 0 e - α y ,
d P / P = γ ( d J / J ) = - α γ d y .
l n P = l n J γ + B
P = c J γ ,
P = x x T J s γ = x J 0 γ ,
I s = q ( N 0 - N ) / τ ,
d F / d t = F / x × d x / d t + F / t .
J = J 0 ( e 2 π i x / λ + 1 ) ,
x J 0 γ T 0 r [ e 2 π i x / λ + 1 ] d a .
F = x J 0 γ T 0 r { exp 2 π i [ ( x / λ ) - ( t / T 0 ) + 1 } d a .
F = x J 0 γ r T [ S e - 2 π i t / T 0 + 1 ] ,
S = J 0 ( z ) + J 2 ( z )
z = π l / λ ,
x J 0 γ T { 0 r exp 2 π i [ ( x / λ ) - ( t / T 0 ) cos 2 ϕ d a + 0 r cos 2 ϕ d a } .
F = x J 0 γ T r [ ( S 1 / 2 ) e - 2 π i t / T 0 + 0.2 ] ,
= 1 2 [ J 0 ( z 1 ) + J 0 ( z 2 ) + J 2 ( z 1 ) + J 2 ( z 2 ) ] z 1 = π l / λ z 2 = π [ ( l / λ ) - 1 ] .
F / x = F / l
v 0 = d x / d t .
F / t = - ( N 0 - N ) / τ .
d / d t ( N 0 - N ) + ( N 0 - N ) / τ = ( x J 0 γ r T v ) [ S e - 2 π i t / T 0 + 1 ] / l ,
N 0 - N = x J 0 γ r T { S e ( - 2 π i t ) / T 0 1 - i ω τ } + x r J 0 γ T + c x r J 0 γ T e - t / τ .
I s = q ( N 0 - N ) / τ = x q J 0 γ r × T / τ × S / ( 1 + ω 2 τ 2 ) 1 2 .
A = r T / τ = r M ,
I s = ( x q J 0 γ × r M S ) / [ ( 1 + ( ω τ ) 2 ] 1 2 = ( i s M S ) / [ 1 + ( ω τ ) 2 ] 1 2 .
I s = ( x q J 0 γ r M S ) / [ 1 + ( 2 π l / λ ) 2 ] 1 2
ω = 2 π f = 2 π n v = ( 2 π / λ ) v ,
I s = ( x q J 0 γ r R S 1 ) / 2 { 1 + [ 2 π ( l / λ ) ] 2 } 1 2
i N P ¯ = Δ i p 2 ¯ ,
Δ i p = i p ( t ) - i ( av ) ,
I N P = ( i N P ¯ T / τ ) 1 2
I n b = q ( 2 x r M Δ f ) 1 2 ( J b ) γ / 2 [ 1 + ( ω τ ) 2 ] 1 2 .
i 2 ¯ = ( 4 k T Δ f / R c ) ,
I n j = ( i 2 ¯ M ) 1 2 = ( 4 k T M Δ f / R c ) 1 2 .
I n s = ( 2 q i ¯ p M Δ f ) 1 2 = ( 2 q I b Δ f ) 1 2 ,
I N ( 1 / f ) = ( C i p 2 ¯ M Δ f / f A d ) 1 2 .
I s / I n = ( i s M S ) / i ¯ n p ( M ) 1 2 = [ i s S / ( i ¯ n p ) 1 2 ] ( M ) 1 2 .
I s I n = q x J 0 γ r S M / [ 1 + ( ω τ ) 2 ] 1 2 ( Δ i 2 ¯ noise ) 1 2 .
I s / I n = ( M ) 1 2 [ i s S / ( i ¯ NB + i ¯ NGR ) 1 2 ] ,
I s / I n = [ ( x / 2 ) ( A / Δ f ) ] 1 2 S ( J 0 / J ¯ b 1 2 ) γ ,
I s / I n = [ ( x / x l ) ( A / Δ f ) ] 1 2 [ S / ( 2 ) 1 2 ] [ J 0 γ / ( J ¯ l ) γ l / 2 ]
I s / I n = ( x J 0 γ S / 2 ) [ ( q d / p μ p k T ) × A / Δ f × ( 1 + ω 2 τ 2 ) - 1 ] 1 2
I s / I n = x J 0 γ S [ ( 2 p ¯ μ p E ) - 1 × A / Δ f × ( 1 + ω 2 τ 2 ) - 1 ] 1 2 .
I s / I n = ( x J 0 γ S ) / ( c p μ p E ) [ f A / Δ f × ( d / 1 + ω 2 τ 2 ) ] 1 2
NEP = HA / ( I s / I n ) ,
D * = ( A × Δ f ) 1 2 / NEP .
NEP = K 1 ( A × Δ f ) 1 2
D * = 1 / K 1 = S / H ( x / 2 ) 1 2 [ J 0 / ( J b ) 1 2 ] γ .
NEP = K 2 ( A × Δ f ) 1 2 [ 1 + ( 2 π l / λ ) 2 ] 1 2 D * = 1 K 2 [ 1 + ( 2 π l / λ ) 2 ] - 1 2 .
= x S J 0 γ / 2 H × ( q d / p u p k T ) 1 2 [ 1 + ( 2 π l / λ ) 2 ] - 1 2 .
NEP = K 3 ( A × Δ f ) 1 2 [ 1 + ( 2 π l / λ ) 2 ] 1 2
D * = 1 K 3 [ 1 + ( 2 π l / λ ) 2 ] - 1 2 = ( x S J 0 γ / H ) ( 2 p ¯ μ p E ) - 1 2 [ 1 + ( 2 π l / λ ) 2 ] - 1 2 .
NEP = K 4 ( A Δ f / f ) 1 2 [ 1 + ( 2 π l / λ ) 2 ] 1 2
D * = f 1 2 K 4 [ 1 + ( 2 π l / λ ) 2 ] 1 2 = ( x S J 0 γ / c H p ) ( d / μ p E λ ) 1 2 [ 1 + ( 2 π l / λ ) 2 ] - 1 2 ,
Q D = [ ( I s / I n ) 2 / ( J 0 2 T A / J ¯ B ) ] .
Q D = ( x S 2 / 2 T Δ f ) [ J ¯ B ( 1 - γ ) / J 0 2 ( 1 - γ ) ] .
Q D = x [ J ¯ B ( 1 - γ ) / J 0 2 ( 1 - γ ) ] .
Q D = x ;
Q D = ( x 2 q d / 2 p μ p k T ) [ J ¯ B / J 0 2 ( 1 - γ ) ] .
Q D = ( x 2 / p ¯ μ p E ) [ J ¯ B / J 0 2 ( 1 - γ ) ] .
Q D = ( x / c p ) 2 ( 2 d / μ p E λ ) [ J ¯ B / J 0 2 ( 1 - γ ) ] .
D * = A ( 2 γ - 1 ) / 2 γ × Δ f 1 / 2 γ / NEP .
D * = 1 / K 5 = ( η S 2 / 2 ) - 1 / 2 γ ( J B ) - 1 2 ( J 0 / H ) .
NEP = K 6 × A ( 2 γ - 1 ) / 2 γ × Δ f 1 / 2 γ D * = 1 K 6 = ( η 2 S 2 q d / 4 p μ p k T ) 1 / 2 γ ( J 0 / H ) .
NEP = K 7 × A ( 2 γ - 1 ) / 2 γ × Δ f 1 / 2 γ D * = 1 K 7 = ( η 2 S 2 / 2 p μ p E ) 1 / 2 γ ( J 0 / H ) .
NEP = K 8 × A ( 2 γ - 1 ) / 2 γ × Δ f 1 / 2 γ D * = 1 K 8 = ( η 2 S 2 f d / c 2 p 2 μ p 2 E 2 ) 1 / γ ( J 0 / H ) .

Metrics