Abstract

A relationship between longitudinal spherical and longitudinal chromatic aberration and resolving power is discussed and an experiment using this relationship to predict resolving power from design data is described. The results show a high degree of correlation between resolving power predicted by this method and that obtained by measurement on real lenses.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Murcott, H. S. Gottfried, J. Opt. Soc. Am. 45, 644 (1955).
    [CrossRef]
  2. R. E. Keim, N. S. Kapany, J. Opt. Soc. Am. 48, 351 (1958).
    [CrossRef] [PubMed]
  3. R. E. Hopkins, S. Oxley, J. Eyer, J. Opt. Soc. Am. 44, 592 (1954).
    [CrossRef]
  4. F. A. Lucy, J. Opt. Soc. Am. 46, 699 (1956).
    [CrossRef]
  5. K. Miyamoto, Appl. Opt. 2, 1247 (1963).
    [CrossRef]
  6. H. Kubota, K. Miyamoto, Rept. Inst. Ind. Sci., Univ. Tokyo13, 38 (1963).
  7. E. Marchand, R. Phillips, Appl. Opt. 2, 359 (1963).
    [CrossRef]
  8. R. Barakat, M. V. Morello, J. Opt. Soc. Am. 52, 985, 992 (1962).
    [CrossRef]
  9. F. E. Washer, Phot. Eng. 32, 213 (1966).
  10. V. Ronchi, J. Opt. Soc. Am. 56, 561 (1966) (Abstract).
  11. O. N. Stavroudis, L. E. Sutton, Natl. Bur. Std. Monograph 93.

1966 (2)

F. E. Washer, Phot. Eng. 32, 213 (1966).

V. Ronchi, J. Opt. Soc. Am. 56, 561 (1966) (Abstract).

1963 (2)

1962 (1)

R. Barakat, M. V. Morello, J. Opt. Soc. Am. 52, 985, 992 (1962).
[CrossRef]

1958 (1)

1956 (1)

1955 (1)

1954 (1)

Barakat, R.

R. Barakat, M. V. Morello, J. Opt. Soc. Am. 52, 985, 992 (1962).
[CrossRef]

Eyer, J.

Gottfried, H. S.

Hopkins, R. E.

Kapany, N. S.

Keim, R. E.

Kubota, H.

H. Kubota, K. Miyamoto, Rept. Inst. Ind. Sci., Univ. Tokyo13, 38 (1963).

Lucy, F. A.

Marchand, E.

Miyamoto, K.

K. Miyamoto, Appl. Opt. 2, 1247 (1963).
[CrossRef]

H. Kubota, K. Miyamoto, Rept. Inst. Ind. Sci., Univ. Tokyo13, 38 (1963).

Morello, M. V.

R. Barakat, M. V. Morello, J. Opt. Soc. Am. 52, 985, 992 (1962).
[CrossRef]

Murcott, N.

Oxley, S.

Phillips, R.

Ronchi, V.

V. Ronchi, J. Opt. Soc. Am. 56, 561 (1966) (Abstract).

Stavroudis, O. N.

O. N. Stavroudis, L. E. Sutton, Natl. Bur. Std. Monograph 93.

Sutton, L. E.

O. N. Stavroudis, L. E. Sutton, Natl. Bur. Std. Monograph 93.

Washer, F. E.

F. E. Washer, Phot. Eng. 32, 213 (1966).

Appl. Opt. (2)

J. Opt. Soc. Am. (6)

Natl. Bur. Std. Monograph (1)

O. N. Stavroudis, L. E. Sutton, Natl. Bur. Std. Monograph 93.

Phot. Eng. (1)

F. E. Washer, Phot. Eng. 32, 213 (1966).

Other (1)

H. Kubota, K. Miyamoto, Rept. Inst. Ind. Sci., Univ. Tokyo13, 38 (1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

E vs Δf. Each curve shows E for the indicated value of resolving power.

Fig. 2
Fig. 2

10° radial. E vs Δf. Each curve shows E for the indicated value of resolving power.

Fig. 3
Fig. 3

10° tangential. E vs Δf. Each curve shows E for the indicated value of resolving power.

Fig. 4
Fig. 4

20° radial. E vs Δf. Each curve shows E for the indicated value of resolving power.

Fig. 5
Fig. 5

20° tangential. E vs Δf. Each curve shows E for the indicated value of resolving power.

Fig. 6
Fig. 6

30° radial. E vs Δf. Each curve shows E for the indicated value of resolving power.

Fig. 7
Fig. 7

30° tangential. E vs Δf. Each curve shows E for the indicated value of resolving power.

Fig. 8
Fig. 8

40° radial. E vs Δf. Each curve shows E for the indicated value of resolving power.

Fig. 9
Fig. 9

40° tangential. E vs Δf. Each curve shows E for the indicated value of resolving power.

Tables (10)

Tables Icon

Table I 0° Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table II 10° Radial. Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table III 10° Tangential. Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table IV 20° Radial. Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table V 20° Tangential. Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table VI 30° Radial. Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table VII 30° Tangential. Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table VIII 40° Radial. Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table IX 40° Tangential. Comparison between Predicted and Measured Resolving Power. Focal Planes Separated by 0.15 mm; E = 0.35

Tables Icon

Table X Correlation Coefficients 0°a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R 0 = 1 / 1.220 b λ ,
R β , τ = R 0 cos β , R β , t = R 0 cos 3 β .
R 0 = 2 h 0 / 1.220 f ,
R = R 0 h / h 0 .
A R / A 0 = 1 - ( h / h 0 ) 2 = 1 - ( R / R 0 ) 2 .
d f ( R ) = 4 b / R ,
Δ f < 1 2 d f ( R ) = 4 b / R .
J ( R ) = 1 - Δ f / d f ( R ) .
( A R / A 0 ) J ( R ) .
J ( R ) = { d f ( R ) d f ( R ) + f c , Δ f ( R ) + Δ f 1 2 f c d f ( R ) + 1 2 f c - Δ f ( R ) + Δ f d f ( R ) + f c , Δ f ( R ) + Δ f > 1 2 f c .

Metrics