Abstract

The National Bureau of Standards standard of total irradiance as presently issued in the form of a 50-W carbon filament lamp was originally calibrated more than fifty years ago. Recently, needs for higher accuracy and wider ranges of total irradiance have necessitated the setting up of three sizes (100 W, 500 W, and 1000 W) of tungsten-filament lamp standards of total irradiance. These standards operate at a higher temperature than was possible with the carbon-filament lamps, and are shielded, except for a narrow area of the bulb in front of the filament, so the reception of long wavelength flux from the lamps is reduced to a minimum. The new lamps were calibrated by the use of a blackbody at a known temperature together with a quartz plate whose spectral transmittance was accurately determined. The quartz plate limits the flux received from the blackbody to the spectral region below about 4.5 μ and thus reduces errors resulting from water vapor absorption at 6 μ and longer wavelengths. Comparisons show the new standards to be in close agreement with the carbon-filament lamp standard.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ångström, Astrophys. J. 9, 332 (1899); H. L. Callendar, Proc. Phys. Soc. 23, 1 (1910); A. K. Ångström, Astrophy. J. 40, 274 (1914); A. K. Ångström, Tellus 10, 342 (1958); A. K. Ångström, Monthly Weather Rev. 47, 798 (1919).
    [CrossRef]
  2. C. G. Abbot, Smithson. Misc. Coll. 56, No. 19 (1911); C. G. Abbot, L. B. Aldrich, Smithson. Misc. Coll. 87, No. 15 (1932); C. G. Abbot, L. B. Aldrich, A. G. Froiland, Smithson. Misc. Coll. 123, No. 5 (1954); L. B. Aldrich, Smithson. Misc. Coll. 111, No. 14 (1949).
  3. A. J. Drummond, Solar Energy 5, 19 (1961).
    [CrossRef]
  4. W. W. Coblentz, Bull. Bur. Std. 11, 87 (1914).
  5. A. J. Drummond, unpublished data.
  6. E. J. Gillham, private communication.
  7. Ralph Stair, William E. Schneider, Symposium on Thermal Radiation of Solids, S. Katzoff, Ed., NASA Report SP–55, Washington D.C. (1965), p. 217.
  8. Philip J. Wyatt, V. Robert Stull, Gilbert N. Plass, Appl. Opt. 3, 229 (1964).
    [CrossRef]
  9. V. Robert Stull, Philip J. Wyatt, Gilbert N. Plass, Appl. Opt. 3, 243 (1964).
    [CrossRef]
  10. Robert L. List, Smithsonian Meteorological Tables (Government Printing Office, Washington, D.C., 1951), 6th ed., Table 108, p. 382.
  11. E. B. Rosa, G. W. Middlekauff, Proc. Am. Inst. Elec. Engrs. 29, 1191 (1910).
  12. Ralph Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, Appl. Opt. 4, 703 (1965).
    [CrossRef]
  13. W. W. Coblentz, Bull. Bur. Std. 11, 471 (1913); Bur. Std. Sci. Papers 16, 701 (1920).
  14. Ralph Stair, Russell G. Johnston, J. Res. Natl. Bur. Std. 53, 211 (1954).
    [CrossRef]

1965 (1)

1964 (2)

1961 (1)

A. J. Drummond, Solar Energy 5, 19 (1961).
[CrossRef]

1954 (1)

Ralph Stair, Russell G. Johnston, J. Res. Natl. Bur. Std. 53, 211 (1954).
[CrossRef]

1914 (1)

W. W. Coblentz, Bull. Bur. Std. 11, 87 (1914).

1913 (1)

W. W. Coblentz, Bull. Bur. Std. 11, 471 (1913); Bur. Std. Sci. Papers 16, 701 (1920).

1911 (1)

C. G. Abbot, Smithson. Misc. Coll. 56, No. 19 (1911); C. G. Abbot, L. B. Aldrich, Smithson. Misc. Coll. 87, No. 15 (1932); C. G. Abbot, L. B. Aldrich, A. G. Froiland, Smithson. Misc. Coll. 123, No. 5 (1954); L. B. Aldrich, Smithson. Misc. Coll. 111, No. 14 (1949).

1910 (1)

E. B. Rosa, G. W. Middlekauff, Proc. Am. Inst. Elec. Engrs. 29, 1191 (1910).

1899 (1)

K. Ångström, Astrophys. J. 9, 332 (1899); H. L. Callendar, Proc. Phys. Soc. 23, 1 (1910); A. K. Ångström, Astrophy. J. 40, 274 (1914); A. K. Ångström, Tellus 10, 342 (1958); A. K. Ångström, Monthly Weather Rev. 47, 798 (1919).
[CrossRef]

Abbot, C. G.

C. G. Abbot, Smithson. Misc. Coll. 56, No. 19 (1911); C. G. Abbot, L. B. Aldrich, Smithson. Misc. Coll. 87, No. 15 (1932); C. G. Abbot, L. B. Aldrich, A. G. Froiland, Smithson. Misc. Coll. 123, No. 5 (1954); L. B. Aldrich, Smithson. Misc. Coll. 111, No. 14 (1949).

Ångström, K.

K. Ångström, Astrophys. J. 9, 332 (1899); H. L. Callendar, Proc. Phys. Soc. 23, 1 (1910); A. K. Ångström, Astrophy. J. 40, 274 (1914); A. K. Ångström, Tellus 10, 342 (1958); A. K. Ångström, Monthly Weather Rev. 47, 798 (1919).
[CrossRef]

Coblentz, W. W.

W. W. Coblentz, Bull. Bur. Std. 11, 87 (1914).

W. W. Coblentz, Bull. Bur. Std. 11, 471 (1913); Bur. Std. Sci. Papers 16, 701 (1920).

Drummond, A. J.

A. J. Drummond, Solar Energy 5, 19 (1961).
[CrossRef]

A. J. Drummond, unpublished data.

Gillham, E. J.

E. J. Gillham, private communication.

Jackson, J. K.

Johnston, Russell G.

Ralph Stair, Russell G. Johnston, J. Res. Natl. Bur. Std. 53, 211 (1954).
[CrossRef]

List, Robert L.

Robert L. List, Smithsonian Meteorological Tables (Government Printing Office, Washington, D.C., 1951), 6th ed., Table 108, p. 382.

Middlekauff, G. W.

E. B. Rosa, G. W. Middlekauff, Proc. Am. Inst. Elec. Engrs. 29, 1191 (1910).

Plass, Gilbert N.

Robert Stull, V.

Rosa, E. B.

E. B. Rosa, G. W. Middlekauff, Proc. Am. Inst. Elec. Engrs. 29, 1191 (1910).

Schneider, W. E.

Schneider, William E.

Ralph Stair, William E. Schneider, Symposium on Thermal Radiation of Solids, S. Katzoff, Ed., NASA Report SP–55, Washington D.C. (1965), p. 217.

Stair, Ralph

Ralph Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, Appl. Opt. 4, 703 (1965).
[CrossRef]

Ralph Stair, Russell G. Johnston, J. Res. Natl. Bur. Std. 53, 211 (1954).
[CrossRef]

Ralph Stair, William E. Schneider, Symposium on Thermal Radiation of Solids, S. Katzoff, Ed., NASA Report SP–55, Washington D.C. (1965), p. 217.

Waters, W. R.

Wyatt, Philip J.

Appl. Opt. (3)

Astrophys. J. (1)

K. Ångström, Astrophys. J. 9, 332 (1899); H. L. Callendar, Proc. Phys. Soc. 23, 1 (1910); A. K. Ångström, Astrophy. J. 40, 274 (1914); A. K. Ångström, Tellus 10, 342 (1958); A. K. Ångström, Monthly Weather Rev. 47, 798 (1919).
[CrossRef]

Bull. Bur. Std. (2)

W. W. Coblentz, Bull. Bur. Std. 11, 471 (1913); Bur. Std. Sci. Papers 16, 701 (1920).

W. W. Coblentz, Bull. Bur. Std. 11, 87 (1914).

J. Res. Natl. Bur. Std. (1)

Ralph Stair, Russell G. Johnston, J. Res. Natl. Bur. Std. 53, 211 (1954).
[CrossRef]

Proc. Am. Inst. Elec. Engrs. (1)

E. B. Rosa, G. W. Middlekauff, Proc. Am. Inst. Elec. Engrs. 29, 1191 (1910).

Smithson. Misc. Coll. (1)

C. G. Abbot, Smithson. Misc. Coll. 56, No. 19 (1911); C. G. Abbot, L. B. Aldrich, Smithson. Misc. Coll. 87, No. 15 (1932); C. G. Abbot, L. B. Aldrich, A. G. Froiland, Smithson. Misc. Coll. 123, No. 5 (1954); L. B. Aldrich, Smithson. Misc. Coll. 111, No. 14 (1949).

Solar Energy (1)

A. J. Drummond, Solar Energy 5, 19 (1961).
[CrossRef]

Other (4)

A. J. Drummond, unpublished data.

E. J. Gillham, private communication.

Ralph Stair, William E. Schneider, Symposium on Thermal Radiation of Solids, S. Katzoff, Ed., NASA Report SP–55, Washington D.C. (1965), p. 217.

Robert L. List, Smithsonian Meteorological Tables (Government Printing Office, Washington, D.C., 1951), 6th ed., Table 108, p. 382.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Layout of blackbody; water-cooled shields, shutter, and aperture; thermopile; lamp, and lamp shutter and shields; and auxiliary equipment employed in the comparison of lamps with blackbody. Q quartz plate. W2 water-cooled shield containing aperture. W1, secondary water-cooled shield. S water-cooled shutter. T, thermometer.

Fig. 2
Fig. 2

Conical blackbody detector consisting of a formed gold foil cone blackened inside and having several thermojunctions attached along a single fold.

Fig. 3
Fig. 3

Spectral emission of a 1300°K blackbody, and a 300°K blackbody; negligible transmittance of a quartz plate; and transmittance of a 33-cm path for water vapor and carbon dioxide.

Fig. 4
Fig. 4

Total atmospheric humidity as a function of relative humidity and temperature. (From Smithsonian Meteorological Tables.)

Tables (3)

Tables Icon

Table I Experimental Values of the Stefan–Boltzmann Constant, 1916–1933

Tables Icon

Table II New and Original Calibrations on Three Primary Carbon–Filament Lamps, in μW/cm2 at 1.00 m

Tables Icon

Table III Total Irradiances from Three Groups of Tungsten-Filament Lamp Reference Standards

Metrics