Abstract

A novel stacking procedure is presented for volume phase holographic gratings (VPHGs) recorded in photopolymer material using Corning Willow Glass as a flexible substrate in order to achieve broader angular and spectral selectivity in a diffractive device with high efficiency for solar and LED applications. For the first time to our knowledge, we have shown a device designed for use with a white LED that has the same input and output angles and high efficiency when illuminated by different wavelengths. In this paper, two VPHGs were designed, experimentally recorded, and tested when illuminated at normal incidence. The experimental approach is based on stacking two individual gratings in which the spatial frequency and slant have been tailored to the target wavelength and using real-time on-Bragg monitoring of the gratings in order to control the recorded refractive index modulation, thereby optimizing each grating efficiency for its design wavelength. Lamination of the two gratings together was enabled by using a flexible glass substrate (Corning Willow Glass). Recording conditions were studied in order to minimize the change in diffraction efficiency and peak diffraction angle during lamination and bleaching. The final fabricated stacked device was illuminated by a white light source, and its output was spectrally analyzed. Compared to a single grating, the stacked device demonstrated a twofold increase in angular and wavelength range. The angular and wavelength selectivity curves are in good agreement with the theoretical prediction for this design. This approach could be used to fabricate stacked lenses for white light LED or solar applications.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications

Hoda Akbari, Izabela Naydenova, and Suzanne Martin
Appl. Opt. 53(7) 1343-1353 (2014)

Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications

Julia Marín-Sáez, Jesús Atencia, Daniel Chemisana, and María-Victoria Collados
Opt. Express 24(6) A720-A730 (2016)

Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode

Sanjay Keshri, Kevin Murphy, Vincent Toal, Izabela Naydenova, and Suzanne Martin
Appl. Opt. 57(22) E163-E172 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription