Abstract

The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables using interferogram self-correction to fully retrieve the coherence of a dual-comb beat note between two independent fiber lasers. This approach allows the $ f - 2f $ self-referencing of both combs, which is a significant simplification. Broadband near-infrared methane spectroscopy has been conducted to demonstrate the simplified system’s preserved performance.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-comb spectroscopy of methane based on a free-running Erbium-doped fiber laser

Jie Chen, Xin Zhao, Zijun Yao, Ting Li, Qian Li, Shuguo Xie, Jiansheng Liu, and Zheng Zheng
Opt. Express 27(8) 11406-11412 (2019)

Picometer-resolution dual-comb spectroscopy with a free-running fiber laser

Xin Zhao, Guoqing Hu, Bofeng Zhao, Cui Li, Yingling Pan, Ya Liu, Takeshi Yasui, and Zheng Zheng
Opt. Express 24(19) 21833-21845 (2016)

Dual-comb spectroscopy with a single free-running thulium-doped fiber laser

Ruoyu Liao, Youjian Song, Wu Liu, Haosen Shi, Lu Chai, and Minglie Hu
Opt. Express 26(8) 11046-11054 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Ycas, F. R. Giorgetta, K. C. Cossel, E. M. Waxman, E. Baumann, N. R. Newbury, and I. Coddington, “Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths,” Optica 6, 165–168 (2019).
    [Crossref]
  2. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
    [Crossref]
  3. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
    [Crossref]
  4. K. Fdil, V. Michaud-Belleau, N. Bourbeau Hébert, P. Guay, A. J. Fleisher, J.-D. Deschênes, and J. Genest, “Dual electro-optic frequency comb spectroscopy using pseudo-random modulation,” Opt. Lett. 44, 4415–4418 (2019).
    [Crossref]
  5. P. Guay, N. Bourbeau Hébert, V. Michaud-Belleau, D. G. Lancaster, and J. Genest, “Methane spectroscopy using a free-running chip-based dual-comb laser,” Opt. Lett. 44, 4375–4378 (2019).
    [Crossref]
  6. J. Chen, X. Zhao, Z. Yao, T. Li, Q. Li, S. Xie, J. Liu, and Z. Zheng, “Dual-comb spectroscopy of methane based on a free-running erbium-doped fiber laser,” Opt. Express 27, 11406–11412 (2019).
    [Crossref]
  7. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
    [Crossref]
  8. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
    [Crossref]
  9. S. Coburn, C. B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N. R. Newbury, K. Prasad, I. Coddington, and G. B. Rieker, “Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer,” Optica 5, 320–327 (2018).
    [Crossref]
  10. P. Guay, J. Genest, and A. J. Fleisher, “Precision spectroscopy of H13CN using a free-running, all-fiber dual electro-optic frequency comb system,” Opt. Lett. 43, 1407–1410 (2018).
    [Crossref]
  11. N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43, 1814–1817 (2018).
    [Crossref]
  12. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24, 21833–21845 (2016).
    [Crossref]
  13. L. C. Sinclair, J.-D. Deschenes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
    [Crossref]
  14. N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25, 8168–8179 (2017).
    [Crossref]
  15. A. Tourigny-Plante, V. Michaud-Belleau, N. Bourbeau Hébert, H. Bergeron, J. Genest, and J.-D. Deschênes, “An open and flexible digital phase-locked loop for optical metrology,” Rev. Sci. Instrum. 89, 093103 (2018).
    [Crossref]
  16. J.-D. Deschênes, P. Giaccari, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).
    [Crossref]
  17. N. B. Hébert, V. Michaud-Belleau, J.-D. Deschênes, and J. Genest, “Self-correction limits in dual-comb interferometry,” IEEE J. Quantum Electron. 55, 2918935 (2019).
    [Crossref]

2019 (5)

2018 (4)

2017 (1)

2016 (2)

2015 (2)

L. C. Sinclair, J.-D. Deschenes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

2014 (2)

2010 (1)

Alden, C. B.

Baumann, E.

Bergeron, H.

A. Tourigny-Plante, V. Michaud-Belleau, N. Bourbeau Hébert, H. Bergeron, J. Genest, and J.-D. Deschênes, “An open and flexible digital phase-locked loop for optical metrology,” Rev. Sci. Instrum. 89, 093103 (2018).
[Crossref]

N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25, 8168–8179 (2017).
[Crossref]

Bourbeau Hébert, N.

Chen, G. Y.

Chen, J.

Coburn, S.

Coddington, I.

Cossel, K.

Cossel, K. C.

Cromer, C.

Deschenes, J.-D.

L. C. Sinclair, J.-D. Deschenes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Deschênes, J.-D.

Fdil, K.

Fleisher, A. J.

Genest, J.

K. Fdil, V. Michaud-Belleau, N. Bourbeau Hébert, P. Guay, A. J. Fleisher, J.-D. Deschênes, and J. Genest, “Dual electro-optic frequency comb spectroscopy using pseudo-random modulation,” Opt. Lett. 44, 4415–4418 (2019).
[Crossref]

P. Guay, N. Bourbeau Hébert, V. Michaud-Belleau, D. G. Lancaster, and J. Genest, “Methane spectroscopy using a free-running chip-based dual-comb laser,” Opt. Lett. 44, 4375–4378 (2019).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J.-D. Deschênes, and J. Genest, “Self-correction limits in dual-comb interferometry,” IEEE J. Quantum Electron. 55, 2918935 (2019).
[Crossref]

A. Tourigny-Plante, V. Michaud-Belleau, N. Bourbeau Hébert, H. Bergeron, J. Genest, and J.-D. Deschênes, “An open and flexible digital phase-locked loop for optical metrology,” Rev. Sci. Instrum. 89, 093103 (2018).
[Crossref]

P. Guay, J. Genest, and A. J. Fleisher, “Precision spectroscopy of H13CN using a free-running, all-fiber dual electro-optic frequency comb system,” Opt. Lett. 43, 1407–1410 (2018).
[Crossref]

N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43, 1814–1817 (2018).
[Crossref]

N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25, 8168–8179 (2017).
[Crossref]

J.-D. Deschênes, P. Giaccari, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).
[Crossref]

Giaccari, P.

Giorgetta, F.

Giorgetta, F. R.

Guay, P.

Hati, A.

Hébert, N. B.

Hodges, J. T.

Hong, F.-L.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Hosaka, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Hu, G.

Inaba, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Iwakuni, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref]

Khader, I. H.

L. C. Sinclair, J.-D. Deschenes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Khurmi, C.

Kofler, J.

Lancaster, D. G.

Li, C.

Li, Q.

Li, T.

Liu, J.

Liu, Y.

Long, D. A.

Michaud-Belleau, V.

Newbury, N. R.

Okubo, S.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Onae, A.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Pan, Y.

Petron, G.

Plusquellic, D. F.

Prasad, K.

Reed, Z. D.

Rieker, G. B.

Sasada, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Sinclair, L. C.

Sonderhouse, L.

L. C. Sinclair, J.-D. Deschenes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Swann, W. C.

Sweeney, C.

Tans, P. P.

Tourigny-Plante, A.

A. Tourigny-Plante, V. Michaud-Belleau, N. Bourbeau Hébert, H. Bergeron, J. Genest, and J.-D. Deschênes, “An open and flexible digital phase-locked loop for optical metrology,” Rev. Sci. Instrum. 89, 093103 (2018).
[Crossref]

Truong, G.-W.

Waxman, E. M.

Wright, R.

Xie, S.

Yao, Z.

Yasui, T.

Ycas, G.

Zhao, B.

Zhao, X.

Zheng, Z.

Zolot, A. M.

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

N. B. Hébert, V. Michaud-Belleau, J.-D. Deschênes, and J. Genest, “Self-correction limits in dual-comb interferometry,” IEEE J. Quantum Electron. 55, 2918935 (2019).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Optica (3)

Rev. Sci. Instrum. (2)

L. C. Sinclair, J.-D. Deschenes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

A. Tourigny-Plante, V. Michaud-Belleau, N. Bourbeau Hébert, H. Bergeron, J. Genest, and J.-D. Deschênes, “An open and flexible digital phase-locked loop for optical metrology,” Rev. Sci. Instrum. 89, 093103 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of a single-frequency comb reproduced from [13] where components substituted by a second CW laser and a self-correction algorithm are indicated by the red-lined areas. SESAM, semiconductor saturable absorber mirror; PZT, piezo-electric transducer; OC, output coupler; ISO, isolator; WDM, wavelength division multiplexer; PM-HNLF, polarization-maintaining highly nonlinear fiber; PPLN, periodically poled lithium niobate; BPF, bandpass filter; PBS, polarization beam splitter. (b) Experimental setup for the dual-comb experiment where two frequency combs are used; CW, continuous-wave laser.
Fig. 2.
Fig. 2. (top panel) Transmission spectrum in the $ 2{\nu _3}$ R(3) methane manifold region for the case of a phase correction with one CW laser, the fully stabilized case, and an HITRAN fit. (bottom panels) Residuals between the transmission spectra and the HITRAN fit.
Fig. 3.
Fig. 3. Transmission spectrum of methane (R and Q branches) for the cases of a fully locked (red) and minimally stabilized frequency combs (black) where no distinction is visible within 1%.
Fig. 4.
Fig. 4. Transmission spectrum (top) in the $ 2{\nu _3} $ R(3) methane manifold region for the experimental data without the CEO servo-loop (black) and as modeled by Voigt line shapes computed using parameters from the HITRAN 2016 database (red) and the corresponding residuals (bottom). Standard deviation of residuals $ \sigma $ is given on the bottom panel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ d f r = ϕ 1530 n m ϕ 1564 n m k l ,
ϕ 1640 = ϕ 1564 + ( m l ) ϕ d f r .

Metrics