Abstract

The influence of the initial polarization state of a source on the detection range of a system probing through natural dense water fog is analyzed. Information about the source is conveyed by ballistic, snake, and highly scattered photons. During propagation, the polarization state of ballistic and snake photons is not altered. It is shown that though circular polarization is not altered by simple direction changes during scattering, and has thus a tendency to be preserved longer in the highly scattered photons, it does not necessarily convey more useful information about the source than linear polarization or even an unpolarized beam. It is also shown that in any forward propagating system that can be described by the small-angle approximation the impact of polarization memory can be neglected.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Superior signal persistence of circularly polarized light in polydisperse, real-world fog environments

J. D. van der Laan, J. B. Wright, S. A. Kemme, and D. A. Scrymgeour
Appl. Opt. 57(19) 5464-5473 (2018)

Visible–IR transmission enhancement through fog using circularly polarized light

Xiangwei Zeng, Jinkui Chu, Wenda Cao, Weidong Kang, and Ran Zhang
Appl. Opt. 57(23) 6817-6822 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics