Abstract

Real-time biohazard detectors must be developed to facilitate the rapid implementation of appropriate protective measures against foodborne pathogens. Laser-induced breakdown spectroscopy (LIBS) is a promising technique for the real-time detection of hazardous bacteria (HB) in the field. However, distinguishing among various HBs that exhibit similar C, N, O, H, or trace metal atomic emissions complicates HB detection by LIBS. This paper proposes the use of LIBS and chemometric tools to discriminate Staphylococcus aureus, Bacillus cereus, and Escherichia coli on slide substrates. Principal component analysis (PCA) and the genetic algorithm (GA) were used to select features and reduce the size of spectral data. Several models based on the artificial neural network (ANN) and the support vector machine (SVM) were built using the feature lines as input data. The proposed PCA-GA-ANN and PCA-GA-SVM discrimination approaches exhibited correct classification rates of 97.5% and 100%, respectively.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Importance evaluation of spectral lines in Laser-induced breakdown spectroscopy for classification of pathogenic bacteria

Qianqian Wang, Geer Teng, Xiaolei Qiao, Yu Zhao, Jinglin Kong, Liqiang Dong, and Xutai Cui
Biomed. Opt. Express 9(11) 5837-5850 (2018)

Pathogen identification with laser-induced breakdown spectroscopy: the effect of bacterial and biofluid specimen contamination

Qassem I. Mohaidat, Khadija Sheikh, Sunil Palchaudhuri, and Steven J. Rehse
Appl. Opt. 51(7) B99-B107 (2012)

Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, and Seyyed Mohammad Reza Darbani
Appl. Opt. 56(12) 3372-3377 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription