Abstract

In charged spark-ignition engines, additional water injection allows for the reduction of temperature under stoichiometric mixture conditions. However, a higher complexity of the injection and combustion processes is introduced when a mixture of fuel and water (“emulsion”) is injected directly into the combustion chamber using the same injector. For this purpose, the mixture must be homogenized before injection so that a reproducible composition can be adjusted. In principle, gasoline and water are not miscible, and may form an unstable macro-emulsion during mixing. However, the addition of ethanol, which is a biofuel component that is admixed to gasoline, can improve the mixing and may lead to a stable micro-emulsion. For the assessment of the distribution of the water and fuel phases in the mixture, a novel imaging concept based on laser-induced fluorescence (LIF) is proposed. In a first spectroscopic study, a fluorescence dye for imaging of the water phase is selected and evaluated. The fluorescence spectra of the dye dissolved in pure water are investigated under varied conditions using a simplified pressure cell equipped with a stirrer. The study comprises effects of temperature, dye concentration, and photo-dissociation on fluorescence signals. In a second step, fuel is mixed with water (5 vol. % to 10 vol. %) containing the dye, and the water dispersion in the fuel is investigated in an imaging study. Additionally, the miscibility of fuel and water is studied for varying ethanol content, and the homogeneity of the mixture is determined. These first investigations are also essential for the assessment of the potential of the LIF technique for studying the distribution of the water phase in internal combustion engine injection systems and sprays.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence

Michael Storch, Susanne Lind, Stefan Will, and Lars Zigan
Appl. Opt. 55(30) 8532-8540 (2016)

Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays

Matthias Koegl, Bernhard Hofbeck, Kevin Baderschneider, Yogeshwar Nath Mishra, Franz J. T. Huber, Edouard Berrocal, Stefan Will, and Lars Zigan
Opt. Express 26(24) 31750-31766 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Durst, C. Landerl, J. Poggel, C. Schwarz, W. Kleckzka, and B. Hußmann, “BMW Wassereinspritzung: Erste Erfahrungen und künftige Potentiale,” in 38. Internationales Wiener Motorensymposium, Austria, Wien, 2017, pp. 63–79.
  2. B. Franzke, T. Voßhall, P. Adomeit, and A. Müller, “Water injection for meeting future RDE requirements for turbocharged gasoline engines,” MTZ Worldwide 80, 30–39 (2019).
    [Crossref]
  3. M. Böhm, W. Mährle, H.-C. Bartelt, and S. Rubbert, Funktionale Integration einer Wassereinspritzung in den Ottomotor (2016), Vol. 77, pp. 38–43.
  4. H. Jahani and S. R. Gollahalli, “Characteristics of burning Jet A fuel and Jet A fuel-water emulsion sprays,” Combust. Flame 37, 145–154 (1980).
    [Crossref]
  5. C. K. Law, C. H. Lee, and N. Srinivasan, “Combustion characteristics of water-in-oil emulsion droplets,” Combust. Flame 37, 125–143 (1980).
    [Crossref]
  6. S. Okajima, H. Kanno, and S. Kumagai, “Combustion of emulsified fuel droplets under microgravity,” Acta Astronaut. 12, 555–563 (1985).
    [Crossref]
  7. M. A. A. Nazha and R. J. Crookes, “Effect of water content on pollutant formation in a burning spray of water-in-diesel fuel emulsion,” Symp. Combust. 20, 2001–2010 (1985).
    [Crossref]
  8. L. J. Spadaccini and R. Pelmas, “Evaluation of oil/water emulsions for gas turbine engines,” in Evaporation—Combustion of Fuels (American Chemical Society, 1978), pp. 232–244.
  9. Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
    [Crossref]
  10. J. C. Lasheras, A. C. Fernandez-Pello, and F. L. Dryer, “Initial observations on the free droplet combustion characteristics of water-in-fuel emulsions†,” Combust. Sci. Technol. 21, 1–14 (1979).
    [Crossref]
  11. C. K. Law, “A model for the combustion of oil/water emulsion droplets,” Combust. Sci. Technol. 17, 29–38 (1977).
    [Crossref]
  12. D. H. Cook and C. K. Law, “A preliminary study on the utilization of water-in-oil emulsions in diesel engines,” Combust. Sci. Technol. 18, 217–221 (1978).
    [Crossref]
  13. T. Kadota and H. Yamasaki, “Recent advances in the combustion of water fuel emulsion,” Prog. Energy Combust. Sci. 28, 385–404 (2002).
    [Crossref]
  14. V. Sazonov, H. Rottengruber, and P. Dragomirov, “Untersuchung der Benzin-Wasser-Emulsion Direkteinspritzung zur Effizienzsteigerung von Ottomotoren,” in 11. Tagung Einspritzung und Kraftstoffe (Springer Fachmedien Wiesbaden, 2019), pp. 515–542.
  15. B. S. Sazhin, M. P. Tyurin, L. M. Kochetov, and R. A. Safonov, “Separation of true emulsions in jet devices,” Theor. Found. Chem. Eng. 43, 12–18 (2009).
    [Crossref]
  16. S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
    [Crossref]
  17. J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
    [Crossref]
  18. Y. N. Mishra, F. Abou Nada, S. Polster, E. Kristensson, and E. Berrocal, “Thermometry in aqueous solutions and sprays using two-color LIF and structured illumination,” Opt. Express 24, 4949–4963 (2016).
    [Crossref]
  19. V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Measur. Sci. Technol. 20, 015401 (2009).
    [Crossref]
  20. M. C. J. Coolen, R. N. Kieft, C. Rindt, and A. A. van Steenhoven, “Application of 2-D LIF temperature measurements in water using a Nd: YAG laser,” Exp. Fluids 27, 420–426 (1999).
    [Crossref]
  21. T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film,” Sensors 13, 4138–4145 (2013).
    [Crossref]
  22. J. Sakakibara and R. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
    [Crossref]
  23. Y. Zhang, G. Zhang, M. Xu, and J. Wang, “Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence,” Exp. Fluids 54, 1–10 (2013).
    [Crossref]
  24. S. Lind, U. Retzer, S. Will, and L. Zigan, “Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene,” Proc. Combust. Inst. 36, 4497–4504 (2016).
  25. B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine,” Appl. Phys. B 117, 151–175 (2014).
    [Crossref]
  26. S. Lind, L. Zigan, J. Trost, A. Leipertz, and S. Will, “Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique,” Int. J. Engine Res. 17, 120–128 (2015).
    [Crossref]
  27. J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
    [Crossref]
  28. M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Dissertation (Stanford University, 1999).
  29. M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55, 8532–8540 (2016).
    [Crossref]
  30. M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
    [Crossref]
  31. M. Koegl, B. Hofbeck, K. Baderschneider, Y. N. Mishra, F. J. T. Huber, E. Berrocal, S. Will, and L. Zigan, “Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays,” Opt. Express 26, 31750–31766 (2018).
    [Crossref]
  32. P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
    [Crossref]
  33. G. Charalampous and Y. Hardalupas, “Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique),” Appl. Opt. 50, 3622–3637 (2011).
    [Crossref]
  34. G. Charalampous and Y. Hardalupas, “Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique),” Appl. Opt. 50, 1197–1209 (2011).
    [Crossref]
  35. H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
    [Crossref]
  36. E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc. Rapid Publ. 8, 13069 (2013).
    [Crossref]
  37. C. A. Gusbeth, C. Eing, M. Göttel, R. Straessner, and W. Frey, “Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation,” Int. J. Renew. Energy Biofuels 2016, 899698 (2016).
    [Crossref]
  38. M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49, 37–49 (2010).
    [Crossref]
  39. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
    [Crossref]
  40. M. Koegl, B. Hofbeck, S. Will, and L. Zigan, “Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates,” Appl. Energy 209, 426–434 (2018).
    [Crossref]
  41. M. Storch, A. Pfaffenberger, M. Koegl, S. Will, and L. Zigan, “Combustion and sooting behavior of spark-ignited ethanol-isooctane sprays under stratified charge conditions,” Energy Fuels 30, 6080–6090 (2016).
    [Crossref]
  42. B. C. Choi, S. K. Choi, and S. H. Chung, “Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames,” Proc. Combust. Inst. 33, 609–616 (2011).
    [Crossref]
  43. J. A. Dean, Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill Companies, 1999).
  44. Bronkhorst, “FLUIDAT on the Net,” 2019, https://www.fluidat.com .
  45. D. J. Luning Prak, J. S. Cowart, and P. C. Trulove, “Density, viscosity, speed of sound, bulk modulus, and surface tension of binary mixtures of n-heptane + 2, 2, 4-trimethylpentane at (293.15 to 338.15) K and 0.1 MPa,” J. Chem. Eng. Data 59, 3842–3851 (2014).
    [Crossref]
  46. MERCK, “Eosin Y,” https://www.merckmillipore.com/DE/en/product/Eosin-Y-yellowish-C.I.-45380,MDA_CHEM-115935 .
  47. M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41, 5422–5425 (2016).
    [Crossref]
  48. Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58, 110 (2017).
    [Crossref]
  49. X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra,” J. Fluoresc. 24, 819–826 (2014).
    [Crossref]
  50. G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond fluorescence studies of xanthene dyes,” J. Am. Chem. Soc. 99, 4306–4311 (1977).
    [Crossref]
  51. E. Berrocal, E. Kristensson, M. Richter, M. Linne, and M. Aldén, “Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays,” Opt. Express 16, 17870–17881 (2008).
    [Crossref]

2019 (3)

B. Franzke, T. Voßhall, P. Adomeit, and A. Müller, “Water injection for meeting future RDE requirements for turbocharged gasoline engines,” MTZ Worldwide 80, 30–39 (2019).
[Crossref]

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
[Crossref]

2018 (2)

M. Koegl, B. Hofbeck, K. Baderschneider, Y. N. Mishra, F. J. T. Huber, E. Berrocal, S. Will, and L. Zigan, “Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays,” Opt. Express 26, 31750–31766 (2018).
[Crossref]

M. Koegl, B. Hofbeck, S. Will, and L. Zigan, “Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates,” Appl. Energy 209, 426–434 (2018).
[Crossref]

2017 (1)

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58, 110 (2017).
[Crossref]

2016 (6)

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41, 5422–5425 (2016).
[Crossref]

M. Storch, A. Pfaffenberger, M. Koegl, S. Will, and L. Zigan, “Combustion and sooting behavior of spark-ignited ethanol-isooctane sprays under stratified charge conditions,” Energy Fuels 30, 6080–6090 (2016).
[Crossref]

M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55, 8532–8540 (2016).
[Crossref]

C. A. Gusbeth, C. Eing, M. Göttel, R. Straessner, and W. Frey, “Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation,” Int. J. Renew. Energy Biofuels 2016, 899698 (2016).
[Crossref]

S. Lind, U. Retzer, S. Will, and L. Zigan, “Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene,” Proc. Combust. Inst. 36, 4497–4504 (2016).

Y. N. Mishra, F. Abou Nada, S. Polster, E. Kristensson, and E. Berrocal, “Thermometry in aqueous solutions and sprays using two-color LIF and structured illumination,” Opt. Express 24, 4949–4963 (2016).
[Crossref]

2015 (1)

S. Lind, L. Zigan, J. Trost, A. Leipertz, and S. Will, “Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique,” Int. J. Engine Res. 17, 120–128 (2015).
[Crossref]

2014 (4)

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine,” Appl. Phys. B 117, 151–175 (2014).
[Crossref]

D. J. Luning Prak, J. S. Cowart, and P. C. Trulove, “Density, viscosity, speed of sound, bulk modulus, and surface tension of binary mixtures of n-heptane + 2, 2, 4-trimethylpentane at (293.15 to 338.15) K and 0.1 MPa,” J. Chem. Eng. Data 59, 3842–3851 (2014).
[Crossref]

Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
[Crossref]

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra,” J. Fluoresc. 24, 819–826 (2014).
[Crossref]

2013 (5)

T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film,” Sensors 13, 4138–4145 (2013).
[Crossref]

Y. Zhang, G. Zhang, M. Xu, and J. Wang, “Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence,” Exp. Fluids 54, 1–10 (2013).
[Crossref]

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc. Rapid Publ. 8, 13069 (2013).
[Crossref]

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[Crossref]

2011 (3)

2010 (1)

2009 (2)

B. S. Sazhin, M. P. Tyurin, L. M. Kochetov, and R. A. Safonov, “Separation of true emulsions in jet devices,” Theor. Found. Chem. Eng. 43, 12–18 (2009).
[Crossref]

V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Measur. Sci. Technol. 20, 015401 (2009).
[Crossref]

2008 (1)

2002 (2)

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

T. Kadota and H. Yamasaki, “Recent advances in the combustion of water fuel emulsion,” Prog. Energy Combust. Sci. 28, 385–404 (2002).
[Crossref]

2000 (1)

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

1999 (3)

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[Crossref]

M. C. J. Coolen, R. N. Kieft, C. Rindt, and A. A. van Steenhoven, “Application of 2-D LIF temperature measurements in water using a Nd: YAG laser,” Exp. Fluids 27, 420–426 (1999).
[Crossref]

J. Sakakibara and R. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[Crossref]

1985 (2)

S. Okajima, H. Kanno, and S. Kumagai, “Combustion of emulsified fuel droplets under microgravity,” Acta Astronaut. 12, 555–563 (1985).
[Crossref]

M. A. A. Nazha and R. J. Crookes, “Effect of water content on pollutant formation in a burning spray of water-in-diesel fuel emulsion,” Symp. Combust. 20, 2001–2010 (1985).
[Crossref]

1980 (2)

H. Jahani and S. R. Gollahalli, “Characteristics of burning Jet A fuel and Jet A fuel-water emulsion sprays,” Combust. Flame 37, 145–154 (1980).
[Crossref]

C. K. Law, C. H. Lee, and N. Srinivasan, “Combustion characteristics of water-in-oil emulsion droplets,” Combust. Flame 37, 125–143 (1980).
[Crossref]

1979 (1)

J. C. Lasheras, A. C. Fernandez-Pello, and F. L. Dryer, “Initial observations on the free droplet combustion characteristics of water-in-fuel emulsions†,” Combust. Sci. Technol. 21, 1–14 (1979).
[Crossref]

1978 (1)

D. H. Cook and C. K. Law, “A preliminary study on the utilization of water-in-oil emulsions in diesel engines,” Combust. Sci. Technol. 18, 217–221 (1978).
[Crossref]

1977 (2)

C. K. Law, “A model for the combustion of oil/water emulsion droplets,” Combust. Sci. Technol. 17, 29–38 (1977).
[Crossref]

G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond fluorescence studies of xanthene dyes,” J. Am. Chem. Soc. 99, 4306–4311 (1977).
[Crossref]

Abou Nada, F.

Adomeit, P.

B. Franzke, T. Voßhall, P. Adomeit, and A. Müller, “Water injection for meeting future RDE requirements for turbocharged gasoline engines,” MTZ Worldwide 80, 30–39 (2019).
[Crossref]

Adrian, R.

J. Sakakibara and R. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[Crossref]

Aldén, M.

Aoki, H.

T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film,” Sensors 13, 4138–4145 (2013).
[Crossref]

Aske, N.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Aziz, A. R. B. A.

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

Baderschneider, K.

Bartelt, H.-C.

M. Böhm, W. Mährle, H.-C. Bartelt, and S. Rubbert, Funktionale Integration einer Wassereinspritzung in den Ottomotor (2016), Vol. 77, pp. 38–43.

Baszanowska, E.

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc. Rapid Publ. 8, 13069 (2013).
[Crossref]

Baum, E.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine,” Appl. Phys. B 117, 151–175 (2014).
[Crossref]

Berrocal, E.

Beyrau, F.

Binh-Khiem, N.

T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film,” Sensors 13, 4138–4145 (2013).
[Crossref]

Böhm, B.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine,” Appl. Phys. B 117, 151–175 (2014).
[Crossref]

Böhm, M.

M. Böhm, W. Mährle, H.-C. Bartelt, and S. Rubbert, Funktionale Integration einer Wassereinspritzung in den Ottomotor (2016), Vol. 77, pp. 38–43.

Brandal, Ø.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Charalampous, G.

Choi, B. C.

B. C. Choi, S. K. Choi, and S. H. Chung, “Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames,” Proc. Combust. Inst. 33, 609–616 (2011).
[Crossref]

Choi, S. K.

B. C. Choi, S. K. Choi, and S. H. Chung, “Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames,” Proc. Combust. Inst. 33, 609–616 (2011).
[Crossref]

Christensen, K. T.

V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Measur. Sci. Technol. 20, 015401 (2009).
[Crossref]

Chung, S. H.

B. C. Choi, S. K. Choi, and S. H. Chung, “Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames,” Proc. Combust. Inst. 33, 609–616 (2011).
[Crossref]

Conrad, C.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
[Crossref]

Cook, D. H.

D. H. Cook and C. K. Law, “A preliminary study on the utilization of water-in-oil emulsions in diesel engines,” Combust. Sci. Technol. 18, 217–221 (1978).
[Crossref]

Coolen, M. C. J.

M. C. J. Coolen, R. N. Kieft, C. Rindt, and A. A. van Steenhoven, “Application of 2-D LIF temperature measurements in water using a Nd: YAG laser,” Exp. Fluids 27, 420–426 (1999).
[Crossref]

Cowart, J. S.

D. J. Luning Prak, J. S. Cowart, and P. C. Trulove, “Density, viscosity, speed of sound, bulk modulus, and surface tension of binary mixtures of n-heptane + 2, 2, 4-trimethylpentane at (293.15 to 338.15) K and 0.1 MPa,” J. Chem. Eng. Data 59, 3842–3851 (2014).
[Crossref]

Crookes, R. J.

M. A. A. Nazha and R. J. Crookes, “Effect of water content on pollutant formation in a burning spray of water-in-diesel fuel emulsion,” Symp. Combust. 20, 2001–2010 (1985).
[Crossref]

Crua, C.

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

Dean, J. A.

J. A. Dean, Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill Companies, 1999).

Dragomirov, P.

V. Sazonov, H. Rottengruber, and P. Dragomirov, “Untersuchung der Benzin-Wasser-Emulsion Direkteinspritzung zur Effizienzsteigerung von Ottomotoren,” in 11. Tagung Einspritzung und Kraftstoffe (Springer Fachmedien Wiesbaden, 2019), pp. 515–542.

Dreizler, A.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine,” Appl. Phys. B 117, 151–175 (2014).
[Crossref]

Dryer, F. L.

J. C. Lasheras, A. C. Fernandez-Pello, and F. L. Dryer, “Initial observations on the free droplet combustion characteristics of water-in-fuel emulsions†,” Combust. Sci. Technol. 21, 1–14 (1979).
[Crossref]

Durst, B.

B. Durst, C. Landerl, J. Poggel, C. Schwarz, W. Kleckzka, and B. Hußmann, “BMW Wassereinspritzung: Erste Erfahrungen und künftige Potentiale,” in 38. Internationales Wiener Motorensymposium, Austria, Wien, 2017, pp. 63–79.

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

Eing, C.

C. A. Gusbeth, C. Eing, M. Göttel, R. Straessner, and W. Frey, “Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation,” Int. J. Renew. Energy Biofuels 2016, 899698 (2016).
[Crossref]

Farrugia, N.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[Crossref]

Fernandez-Pello, A. C.

J. C. Lasheras, A. C. Fernandez-Pello, and F. L. Dryer, “Initial observations on the free droplet combustion characteristics of water-in-fuel emulsions†,” Combust. Sci. Technol. 21, 1–14 (1979).
[Crossref]

Fleming, G. R.

G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond fluorescence studies of xanthene dyes,” J. Am. Chem. Soc. 99, 4306–4311 (1977).
[Crossref]

Franzke, B.

B. Franzke, T. Voßhall, P. Adomeit, and A. Müller, “Water injection for meeting future RDE requirements for turbocharged gasoline engines,” MTZ Worldwide 80, 30–39 (2019).
[Crossref]

Frey, W.

C. A. Gusbeth, C. Eing, M. Göttel, R. Straessner, and W. Frey, “Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation,” Int. J. Renew. Energy Biofuels 2016, 899698 (2016).
[Crossref]

Gollahalli, S. R.

H. Jahani and S. R. Gollahalli, “Characteristics of burning Jet A fuel and Jet A fuel-water emulsion sprays,” Combust. Flame 37, 145–154 (1980).
[Crossref]

Göttel, M.

C. A. Gusbeth, C. Eing, M. Göttel, R. Straessner, and W. Frey, “Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation,” Int. J. Renew. Energy Biofuels 2016, 899698 (2016).
[Crossref]

Greenhalgh, D. A.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[Crossref]

Gusbeth, C. A.

C. A. Gusbeth, C. Eing, M. Göttel, R. Straessner, and W. Frey, “Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation,” Int. J. Renew. Energy Biofuels 2016, 899698 (2016).
[Crossref]

Harald Auflem, I.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Hardalupas, Y.

Havre, T.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Heikal, M.

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

Hofbeck, B.

M. Koegl, B. Hofbeck, S. Will, and L. Zigan, “Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates,” Appl. Energy 209, 426–434 (2018).
[Crossref]

M. Koegl, B. Hofbeck, K. Baderschneider, Y. N. Mishra, F. J. T. Huber, E. Berrocal, S. Will, and L. Zigan, “Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays,” Opt. Express 26, 31750–31766 (2018).
[Crossref]

Huber, F. J. T.

Hußmann, B.

B. Durst, C. Landerl, J. Poggel, C. Schwarz, W. Kleckzka, and B. Hußmann, “BMW Wassereinspritzung: Erste Erfahrungen und künftige Potentiale,” in 38. Internationales Wiener Motorensymposium, Austria, Wien, 2017, pp. 63–79.

Ismael, M. A.

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

Jahani, H.

H. Jahani and S. R. Gollahalli, “Characteristics of burning Jet A fuel and Jet A fuel-water emulsion sprays,” Combust. Flame 37, 145–154 (1980).
[Crossref]

Jia, M.

Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
[Crossref]

Jing, B.

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Johnsen, E. E.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Jonsson, J.

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58, 110 (2017).
[Crossref]

Kadota, T.

T. Kadota and H. Yamasaki, “Recent advances in the combustion of water fuel emulsion,” Prog. Energy Combust. Sci. 28, 385–404 (2002).
[Crossref]

Kallevik, H.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Kan, T.

T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film,” Sensors 13, 4138–4145 (2013).
[Crossref]

Kanno, H.

S. Okajima, H. Kanno, and S. Kumagai, “Combustion of emulsified fuel droplets under microgravity,” Acta Astronaut. 12, 555–563 (1985).
[Crossref]

Kieft, R. N.

M. C. J. Coolen, R. N. Kieft, C. Rindt, and A. A. van Steenhoven, “Application of 2-D LIF temperature measurements in water using a Nd: YAG laser,” Exp. Fluids 27, 420–426 (1999).
[Crossref]

Kleckzka, W.

B. Durst, C. Landerl, J. Poggel, C. Schwarz, W. Kleckzka, and B. Hußmann, “BMW Wassereinspritzung: Erste Erfahrungen und künftige Potentiale,” in 38. Internationales Wiener Motorensymposium, Austria, Wien, 2017, pp. 63–79.

Knight, A. W. E.

G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond fluorescence studies of xanthene dyes,” J. Am. Chem. Soc. 99, 4306–4311 (1977).
[Crossref]

Kochetov, L. M.

B. S. Sazhin, M. P. Tyurin, L. M. Kochetov, and R. A. Safonov, “Separation of true emulsions in jet devices,” Theor. Found. Chem. Eng. 43, 12–18 (2009).
[Crossref]

Koegl, M.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
[Crossref]

M. Koegl, B. Hofbeck, K. Baderschneider, Y. N. Mishra, F. J. T. Huber, E. Berrocal, S. Will, and L. Zigan, “Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays,” Opt. Express 26, 31750–31766 (2018).
[Crossref]

M. Koegl, B. Hofbeck, S. Will, and L. Zigan, “Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates,” Appl. Energy 209, 426–434 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58, 110 (2017).
[Crossref]

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41, 5422–5425 (2016).
[Crossref]

M. Storch, A. Pfaffenberger, M. Koegl, S. Will, and L. Zigan, “Combustion and sooting behavior of spark-ignited ethanol-isooctane sprays under stratified charge conditions,” Energy Fuels 30, 6080–6090 (2016).
[Crossref]

Kristensson, E.

Krylova, G.

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Kumagai, S.

S. Okajima, H. Kanno, and S. Kumagai, “Combustion of emulsified fuel droplets under microgravity,” Acta Astronaut. 12, 555–563 (1985).
[Crossref]

Landerl, C.

B. Durst, C. Landerl, J. Poggel, C. Schwarz, W. Kleckzka, and B. Hußmann, “BMW Wassereinspritzung: Erste Erfahrungen und künftige Potentiale,” in 38. Internationales Wiener Motorensymposium, Austria, Wien, 2017, pp. 63–79.

Lasheras, J. C.

J. C. Lasheras, A. C. Fernandez-Pello, and F. L. Dryer, “Initial observations on the free droplet combustion characteristics of water-in-fuel emulsions†,” Combust. Sci. Technol. 21, 1–14 (1979).
[Crossref]

Law, C. K.

C. K. Law, C. H. Lee, and N. Srinivasan, “Combustion characteristics of water-in-oil emulsion droplets,” Combust. Flame 37, 125–143 (1980).
[Crossref]

D. H. Cook and C. K. Law, “A preliminary study on the utilization of water-in-oil emulsions in diesel engines,” Combust. Sci. Technol. 18, 217–221 (1978).
[Crossref]

C. K. Law, “A model for the combustion of oil/water emulsion droplets,” Combust. Sci. Technol. 17, 29–38 (1977).
[Crossref]

Le Gal, P.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[Crossref]

Lee, C. H.

C. K. Law, C. H. Lee, and N. Srinivasan, “Combustion characteristics of water-in-oil emulsion droplets,” Combust. Flame 37, 125–143 (1980).
[Crossref]

Leipertz, A.

S. Lind, L. Zigan, J. Trost, A. Leipertz, and S. Will, “Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique,” Int. J. Engine Res. 17, 120–128 (2015).
[Crossref]

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[Crossref]

M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49, 37–49 (2010).
[Crossref]

Lin, K.-Y.

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Lind, S.

M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55, 8532–8540 (2016).
[Crossref]

S. Lind, U. Retzer, S. Will, and L. Zigan, “Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene,” Proc. Combust. Inst. 36, 4497–4504 (2016).

S. Lind, L. Zigan, J. Trost, A. Leipertz, and S. Will, “Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique,” Int. J. Engine Res. 17, 120–128 (2015).
[Crossref]

Linne, M.

Liu, L.

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra,” J. Fluoresc. 24, 819–826 (2014).
[Crossref]

Löffler, M.

Luning Prak, D. J.

D. J. Luning Prak, J. S. Cowart, and P. C. Trulove, “Density, viscosity, speed of sound, bulk modulus, and surface tension of binary mixtures of n-heptane + 2, 2, 4-trimethylpentane at (293.15 to 338.15) K and 0.1 MPa,” J. Chem. Eng. Data 59, 3842–3851 (2014).
[Crossref]

Mährle, W.

M. Böhm, W. Mährle, H.-C. Bartelt, and S. Rubbert, Funktionale Integration einer Wassereinspritzung in den Ottomotor (2016), Vol. 77, pp. 38–43.

Matsumoto, K.

T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film,” Sensors 13, 4138–4145 (2013).
[Crossref]

McGinn, P.

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Meng, X.

Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
[Crossref]

Mishra, Y. N.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
[Crossref]

M. Koegl, B. Hofbeck, K. Baderschneider, Y. N. Mishra, F. J. T. Huber, E. Berrocal, S. Will, and L. Zigan, “Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays,” Opt. Express 26, 31750–31766 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58, 110 (2017).
[Crossref]

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41, 5422–5425 (2016).
[Crossref]

Y. N. Mishra, F. Abou Nada, S. Polster, E. Kristensson, and E. Berrocal, “Thermometry in aqueous solutions and sprays using two-color LIF and structured illumination,” Opt. Express 24, 4949–4963 (2016).
[Crossref]

Morris, J. M.

G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond fluorescence studies of xanthene dyes,” J. Am. Chem. Soc. 99, 4306–4311 (1977).
[Crossref]

Morrison, R. J. S.

G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond fluorescence studies of xanthene dyes,” J. Am. Chem. Soc. 99, 4306–4311 (1977).
[Crossref]

Müller, A.

B. Franzke, T. Voßhall, P. Adomeit, and A. Müller, “Water injection for meeting future RDE requirements for turbocharged gasoline engines,” MTZ Worldwide 80, 30–39 (2019).
[Crossref]

Na, C.

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Natrajan, V. K.

V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Measur. Sci. Technol. 20, 015401 (2009).
[Crossref]

Nazha, M. A. A.

M. A. A. Nazha and R. J. Crookes, “Effect of water content on pollutant formation in a burning spray of water-in-diesel fuel emulsion,” Symp. Combust. 20, 2001–2010 (1985).
[Crossref]

Nissar, Z.

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

Okajima, S.

S. Okajima, H. Kanno, and S. Kumagai, “Combustion of emulsified fuel droplets under microgravity,” Acta Astronaut. 12, 555–563 (1985).
[Crossref]

Otremba, Z.

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc. Rapid Publ. 8, 13069 (2013).
[Crossref]

Pelmas, R.

L. J. Spadaccini and R. Pelmas, “Evaluation of oil/water emulsions for gas turbine engines,” in Evaporation—Combustion of Fuels (American Chemical Society, 1978), pp. 232–244.

Peterson, B.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine,” Appl. Phys. B 117, 151–175 (2014).
[Crossref]

Pfaffenberger, A.

M. Storch, A. Pfaffenberger, M. Koegl, S. Will, and L. Zigan, “Combustion and sooting behavior of spark-ignited ethanol-isooctane sprays under stratified charge conditions,” Energy Fuels 30, 6080–6090 (2016).
[Crossref]

Poggel, J.

B. Durst, C. Landerl, J. Poggel, C. Schwarz, W. Kleckzka, and B. Hußmann, “BMW Wassereinspritzung: Erste Erfahrungen und künftige Potentiale,” in 38. Internationales Wiener Motorensymposium, Austria, Wien, 2017, pp. 63–79.

Polster, S.

Retzer, U.

S. Lind, U. Retzer, S. Will, and L. Zigan, “Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene,” Proc. Combust. Inst. 36, 4497–4504 (2016).

Richter, M.

Rindt, C.

M. C. J. Coolen, R. N. Kieft, C. Rindt, and A. A. van Steenhoven, “Application of 2-D LIF temperature measurements in water using a Nd: YAG laser,” Exp. Fluids 27, 420–426 (1999).
[Crossref]

Robinson, G. W.

G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond fluorescence studies of xanthene dyes,” J. Am. Chem. Soc. 99, 4306–4311 (1977).
[Crossref]

Rottengruber, H.

V. Sazonov, H. Rottengruber, and P. Dragomirov, “Untersuchung der Benzin-Wasser-Emulsion Direkteinspritzung zur Effizienzsteigerung von Ottomotoren,” in 11. Tagung Einspritzung und Kraftstoffe (Springer Fachmedien Wiesbaden, 2019), pp. 515–542.

Rubbert, S.

M. Böhm, W. Mährle, H.-C. Bartelt, and S. Rubbert, Funktionale Integration einer Wassereinspritzung in den Ottomotor (2016), Vol. 77, pp. 38–43.

Rybdylova, O.

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

Sæther, Ø.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Safonov, R. A.

B. S. Sazhin, M. P. Tyurin, L. M. Kochetov, and R. A. Safonov, “Separation of true emulsions in jet devices,” Theor. Found. Chem. Eng. 43, 12–18 (2009).
[Crossref]

Sakakibara, J.

J. Sakakibara and R. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[Crossref]

Sazhin, B. S.

B. S. Sazhin, M. P. Tyurin, L. M. Kochetov, and R. A. Safonov, “Separation of true emulsions in jet devices,” Theor. Found. Chem. Eng. 43, 12–18 (2009).
[Crossref]

Sazhin, S. S.

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

Sazonov, V.

V. Sazonov, H. Rottengruber, and P. Dragomirov, “Untersuchung der Benzin-Wasser-Emulsion Direkteinspritzung zur Effizienzsteigerung von Ottomotoren,” in 11. Tagung Einspritzung und Kraftstoffe (Springer Fachmedien Wiesbaden, 2019), pp. 515–542.

Schulz, C.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

Schwarz, C.

B. Durst, C. Landerl, J. Poggel, C. Schwarz, W. Kleckzka, and B. Hußmann, “BMW Wassereinspritzung: Erste Erfahrungen und künftige Potentiale,” in 38. Internationales Wiener Motorensymposium, Austria, Wien, 2017, pp. 63–79.

Shimoyama, I.

T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film,” Sensors 13, 4138–4145 (2013).
[Crossref]

Shu, G.

Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
[Crossref]

Sick, V.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine,” Appl. Phys. B 117, 151–175 (2014).
[Crossref]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

Sigmon, G. E.

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Sjöblom, J.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Spadaccini, L. J.

L. J. Spadaccini and R. Pelmas, “Evaluation of oil/water emulsions for gas turbine engines,” in Evaporation—Combustion of Fuels (American Chemical Society, 1978), pp. 232–244.

Srinivasan, N.

C. K. Law, C. H. Lee, and N. Srinivasan, “Combustion characteristics of water-in-oil emulsion droplets,” Combust. Flame 37, 125–143 (1980).
[Crossref]

Storch, M.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
[Crossref]

M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55, 8532–8540 (2016).
[Crossref]

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41, 5422–5425 (2016).
[Crossref]

M. Storch, A. Pfaffenberger, M. Koegl, S. Will, and L. Zigan, “Combustion and sooting behavior of spark-ignited ethanol-isooctane sprays under stratified charge conditions,” Energy Fuels 30, 6080–6090 (2016).
[Crossref]

Straessner, R.

C. A. Gusbeth, C. Eing, M. Göttel, R. Straessner, and W. Frey, “Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation,” Int. J. Renew. Energy Biofuels 2016, 899698 (2016).
[Crossref]

Thurber, M. C.

M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Dissertation (Stanford University, 1999).

Toczek, H.

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc. Rapid Publ. 8, 13069 (2013).
[Crossref]

Trost, J.

S. Lind, L. Zigan, J. Trost, A. Leipertz, and S. Will, “Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique,” Int. J. Engine Res. 17, 120–128 (2015).
[Crossref]

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[Crossref]

Trulove, P. C.

D. J. Luning Prak, J. S. Cowart, and P. C. Trulove, “Density, viscosity, speed of sound, bulk modulus, and surface tension of binary mixtures of n-heptane + 2, 2, 4-trimethylpentane at (293.15 to 338.15) K and 0.1 MPa,” J. Chem. Eng. Data 59, 3842–3851 (2014).
[Crossref]

Tyurin, M. P.

B. S. Sazhin, M. P. Tyurin, L. M. Kochetov, and R. A. Safonov, “Separation of true emulsions in jet devices,” Theor. Found. Chem. Eng. 43, 12–18 (2009).
[Crossref]

van Steenhoven, A. A.

M. C. J. Coolen, R. N. Kieft, C. Rindt, and A. A. van Steenhoven, “Application of 2-D LIF temperature measurements in water using a Nd: YAG laser,” Exp. Fluids 27, 420–426 (1999).
[Crossref]

Voßhall, T.

B. Franzke, T. Voßhall, P. Adomeit, and A. Müller, “Water injection for meeting future RDE requirements for turbocharged gasoline engines,” MTZ Worldwide 80, 30–39 (2019).
[Crossref]

Wang, H.

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Wang, J.

Y. Zhang, G. Zhang, M. Xu, and J. Wang, “Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence,” Exp. Fluids 54, 1–10 (2013).
[Crossref]

Wang, T.

Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
[Crossref]

Wei, Q.

Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
[Crossref]

Westvik, A.

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Will, S.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
[Crossref]

M. Koegl, B. Hofbeck, K. Baderschneider, Y. N. Mishra, F. J. T. Huber, E. Berrocal, S. Will, and L. Zigan, “Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays,” Opt. Express 26, 31750–31766 (2018).
[Crossref]

M. Koegl, B. Hofbeck, S. Will, and L. Zigan, “Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates,” Appl. Energy 209, 426–434 (2018).
[Crossref]

S. Lind, U. Retzer, S. Will, and L. Zigan, “Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene,” Proc. Combust. Inst. 36, 4497–4504 (2016).

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41, 5422–5425 (2016).
[Crossref]

M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55, 8532–8540 (2016).
[Crossref]

M. Storch, A. Pfaffenberger, M. Koegl, S. Will, and L. Zigan, “Combustion and sooting behavior of spark-ignited ethanol-isooctane sprays under stratified charge conditions,” Energy Fuels 30, 6080–6090 (2016).
[Crossref]

S. Lind, L. Zigan, J. Trost, A. Leipertz, and S. Will, “Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique,” Int. J. Engine Res. 17, 120–128 (2015).
[Crossref]

Xu, M.

Y. Zhang, G. Zhang, M. Xu, and J. Wang, “Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence,” Exp. Fluids 54, 1–10 (2013).
[Crossref]

Yamasaki, H.

T. Kadota and H. Yamasaki, “Recent advances in the combustion of water fuel emulsion,” Prog. Energy Combust. Sci. 28, 385–404 (2002).
[Crossref]

Zhang, G.

Y. Zhang, G. Zhang, M. Xu, and J. Wang, “Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence,” Exp. Fluids 54, 1–10 (2013).
[Crossref]

Zhang, J.

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra,” J. Fluoresc. 24, 819–826 (2014).
[Crossref]

Zhang, X.-F.

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra,” J. Fluoresc. 24, 819–826 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, G. Zhang, M. Xu, and J. Wang, “Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence,” Exp. Fluids 54, 1–10 (2013).
[Crossref]

Zhang, Z.

Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
[Crossref]

Zhu, Y.

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Zielinski, O.

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc. Rapid Publ. 8, 13069 (2013).
[Crossref]

Zigan, L.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
[Crossref]

M. Koegl, B. Hofbeck, K. Baderschneider, Y. N. Mishra, F. J. T. Huber, E. Berrocal, S. Will, and L. Zigan, “Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays,” Opt. Express 26, 31750–31766 (2018).
[Crossref]

M. Koegl, B. Hofbeck, S. Will, and L. Zigan, “Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates,” Appl. Energy 209, 426–434 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58, 110 (2017).
[Crossref]

S. Lind, U. Retzer, S. Will, and L. Zigan, “Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene,” Proc. Combust. Inst. 36, 4497–4504 (2016).

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41, 5422–5425 (2016).
[Crossref]

M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55, 8532–8540 (2016).
[Crossref]

M. Storch, A. Pfaffenberger, M. Koegl, S. Will, and L. Zigan, “Combustion and sooting behavior of spark-ignited ethanol-isooctane sprays under stratified charge conditions,” Energy Fuels 30, 6080–6090 (2016).
[Crossref]

S. Lind, L. Zigan, J. Trost, A. Leipertz, and S. Will, “Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique,” Int. J. Engine Res. 17, 120–128 (2015).
[Crossref]

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[Crossref]

Acta Astronaut. (1)

S. Okajima, H. Kanno, and S. Kumagai, “Combustion of emulsified fuel droplets under microgravity,” Acta Astronaut. 12, 555–563 (1985).
[Crossref]

Adv. Colloid Interface Sci. (1)

J. Sjöblom, N. Aske, I. Harald Auflem, Ø. Brandal, T. Havre, Ø. Sæther, A. Westvik, E. E. Johnsen, and H. Kallevik, “Our current understanding of water-in-crude oil emulsions.: recent characterization techniques and high pressure performance,” Adv. Colloid Interface Sci. 100–102, 399–473 (2002).
[Crossref]

Appl. Energy (1)

M. Koegl, B. Hofbeck, S. Will, and L. Zigan, “Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates,” Appl. Energy 209, 426–434 (2018).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (2)

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[Crossref]

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine,” Appl. Phys. B 117, 151–175 (2014).
[Crossref]

Combust. Flame (2)

H. Jahani and S. R. Gollahalli, “Characteristics of burning Jet A fuel and Jet A fuel-water emulsion sprays,” Combust. Flame 37, 145–154 (1980).
[Crossref]

C. K. Law, C. H. Lee, and N. Srinivasan, “Combustion characteristics of water-in-oil emulsion droplets,” Combust. Flame 37, 125–143 (1980).
[Crossref]

Combust. Sci. Technol. (3)

J. C. Lasheras, A. C. Fernandez-Pello, and F. L. Dryer, “Initial observations on the free droplet combustion characteristics of water-in-fuel emulsions†,” Combust. Sci. Technol. 21, 1–14 (1979).
[Crossref]

C. K. Law, “A model for the combustion of oil/water emulsion droplets,” Combust. Sci. Technol. 17, 29–38 (1977).
[Crossref]

D. H. Cook and C. K. Law, “A preliminary study on the utilization of water-in-oil emulsions in diesel engines,” Combust. Sci. Technol. 18, 217–221 (1978).
[Crossref]

Energy Fuels (1)

M. Storch, A. Pfaffenberger, M. Koegl, S. Will, and L. Zigan, “Combustion and sooting behavior of spark-ignited ethanol-isooctane sprays under stratified charge conditions,” Energy Fuels 30, 6080–6090 (2016).
[Crossref]

Exp. Fluids (4)

M. C. J. Coolen, R. N. Kieft, C. Rindt, and A. A. van Steenhoven, “Application of 2-D LIF temperature measurements in water using a Nd: YAG laser,” Exp. Fluids 27, 420–426 (1999).
[Crossref]

J. Sakakibara and R. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[Crossref]

Y. Zhang, G. Zhang, M. Xu, and J. Wang, “Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence,” Exp. Fluids 54, 1–10 (2013).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jonsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58, 110 (2017).
[Crossref]

Fuel (1)

Z. Zhang, T. Wang, M. Jia, Q. Wei, X. Meng, and G. Shu, “Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation,” Fuel 130, 177–188 (2014).
[Crossref]

Int. J. Engine Res. (1)

S. Lind, L. Zigan, J. Trost, A. Leipertz, and S. Will, “Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique,” Int. J. Engine Res. 17, 120–128 (2015).
[Crossref]

Int. J. Heat Mass Transfer (1)

S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, “A simple model for puffing/micro-explosions in water-fuel emulsion droplets,” Int. J. Heat Mass Transfer 131, 815–821 (2019).
[Crossref]

Int. J. Renew. Energy Biofuels (1)

C. A. Gusbeth, C. Eing, M. Göttel, R. Straessner, and W. Frey, “Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation,” Int. J. Renew. Energy Biofuels 2016, 899698 (2016).
[Crossref]

Int. J. Spray Combust. Dyn. (1)

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 11, 1756827718772496 (2019).
[Crossref]

J. Am. Chem. Soc. (1)

G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, and G. W. Robinson, “Picosecond fluorescence studies of xanthene dyes,” J. Am. Chem. Soc. 99, 4306–4311 (1977).
[Crossref]

J. Chem. Eng. Data (1)

D. J. Luning Prak, J. S. Cowart, and P. C. Trulove, “Density, viscosity, speed of sound, bulk modulus, and surface tension of binary mixtures of n-heptane + 2, 2, 4-trimethylpentane at (293.15 to 338.15) K and 0.1 MPa,” J. Chem. Eng. Data 59, 3842–3851 (2014).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc. Rapid Publ. 8, 13069 (2013).
[Crossref]

J. Fluoresc. (1)

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra,” J. Fluoresc. 24, 819–826 (2014).
[Crossref]

Measur. Sci. Technol. (1)

V. K. Natrajan and K. T. Christensen, “Two-color laser-induced fluorescent thermometry for microfluidic systems,” Measur. Sci. Technol. 20, 015401 (2009).
[Crossref]

MTZ Worldwide (1)

B. Franzke, T. Voßhall, P. Adomeit, and A. Müller, “Water injection for meeting future RDE requirements for turbocharged gasoline engines,” MTZ Worldwide 80, 30–39 (2019).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[Crossref]

Opt. Lett. (1)

Proc. Combust. Inst. (3)

B. C. Choi, S. K. Choi, and S. H. Chung, “Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames,” Proc. Combust. Inst. 33, 609–616 (2011).
[Crossref]

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[Crossref]

S. Lind, U. Retzer, S. Will, and L. Zigan, “Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene,” Proc. Combust. Inst. 36, 4497–4504 (2016).

Prog. Energy Combust. Sci. (1)

T. Kadota and H. Yamasaki, “Recent advances in the combustion of water fuel emulsion,” Prog. Energy Combust. Sci. 28, 385–404 (2002).
[Crossref]

Sensors (1)

T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film,” Sensors 13, 4138–4145 (2013).
[Crossref]

Symp. Combust. (1)

M. A. A. Nazha and R. J. Crookes, “Effect of water content on pollutant formation in a burning spray of water-in-diesel fuel emulsion,” Symp. Combust. 20, 2001–2010 (1985).
[Crossref]

Theor. Found. Chem. Eng. (1)

B. S. Sazhin, M. P. Tyurin, L. M. Kochetov, and R. A. Safonov, “Separation of true emulsions in jet devices,” Theor. Found. Chem. Eng. 43, 12–18 (2009).
[Crossref]

Water Res. (1)

H. Wang, K.-Y. Lin, B. Jing, G. Krylova, G. E. Sigmon, P. McGinn, Y. Zhu, and C. Na, “Removal of oil droplets from contaminated water using magnetic carbon nanotubes,” Water Res. 47, 4198–4205 (2013).
[Crossref]

Other (8)

J. A. Dean, Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill Companies, 1999).

Bronkhorst, “FLUIDAT on the Net,” 2019, https://www.fluidat.com .

M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Dissertation (Stanford University, 1999).

V. Sazonov, H. Rottengruber, and P. Dragomirov, “Untersuchung der Benzin-Wasser-Emulsion Direkteinspritzung zur Effizienzsteigerung von Ottomotoren,” in 11. Tagung Einspritzung und Kraftstoffe (Springer Fachmedien Wiesbaden, 2019), pp. 515–542.

L. J. Spadaccini and R. Pelmas, “Evaluation of oil/water emulsions for gas turbine engines,” in Evaporation—Combustion of Fuels (American Chemical Society, 1978), pp. 232–244.

B. Durst, C. Landerl, J. Poggel, C. Schwarz, W. Kleckzka, and B. Hußmann, “BMW Wassereinspritzung: Erste Erfahrungen und künftige Potentiale,” in 38. Internationales Wiener Motorensymposium, Austria, Wien, 2017, pp. 63–79.

M. Böhm, W. Mährle, H.-C. Bartelt, and S. Rubbert, Funktionale Integration einer Wassereinspritzung in den Ottomotor (2016), Vol. 77, pp. 38–43.

MERCK, “Eosin Y,” https://www.merckmillipore.com/DE/en/product/Eosin-Y-yellowish-C.I.-45380,MDA_CHEM-115935 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Optical setup for the investigation of the spectral fluorescence of the tracer Eosin-Y in water (left), and detail of the micro cell (right).
Fig. 2.
Fig. 2. Optical setup for the investigation of the fuel/water emulsions (left), and detail of cuvette assembly (right).
Fig. 3.
Fig. 3. (Left) Emission spectra of Eosin-Y in water normalized to maximum intensity at 0.125 vol%, and (right) with all spectra normalized to their respective maximum values; the inserted diagram shows the linearity ($R^2 = 0.969$) of the integral LIF signal for various dye concentrations in water, 293 K.
Fig. 4.
Fig. 4. Left: temperature effect on spectral fluorescence of the dye Eosin-Y in water (0.1 MPa, normalized to 293 K) with inserted diagram showing the linearity ($R^2 = 0.998$) of the integral LIF signal. Right: normalized fluorescence signal drop due to photo-dissociation (293 K, normalized to 0 min) with inserted diagram showing the temporal decrease of the integral LIF signal.
Fig. 5.
Fig. 5. LIF single-shot images for f/w mixture containing 10% water; top row, low stirrer speed (1250 rpm); bottom row, high stirrer speed (2500 rpm).
Fig. 6.
Fig. 6. LIF single-shot images for various f/w mixtures and ethanol contents, 293 K.
Fig. 7.
Fig. 7. COV calculated out of 50 consecutively taken LIF single-shot images for various ethanol and water contents, 293 K.
Fig. 8.
Fig. 8. Summed up COV values in the ROI for different ethanol and water contents, featuring a detailed view of the processed image with ROI within the cuvette, 293 K.

Tables (1)

Tables Icon

Table 1. Physical and Chemical Properties of the Investigated Fuels and Water, 0.1 MPa [4345]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S f l = η E ρ T r a c e r σ ( λ e x c , T ) ϕ ( λ e x c , T , p , χ i ) .

Metrics