Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatial-light-modulator-based dual shearing direction shearography

Not Accessible

Your library or personal account may give you access

Abstract

We propose a dual shearing shearography system based on a spatial light modulator (SLM). Compared to spatial phase shift shearography, the advantages of this system include its simple structure, relatively high light efficiency, and good phase map quality. Digital shearography is a fast, practical, non-contact, whole-field, and anti-turbulent optical approach to non-destructive testing (NDT) and strain measurement. Because the shearing direction determines the strain direction being measured, tests using multiple shearing directions are sometimes required to obtain strain in different directions and detect all defects. Various setups, based on the spatial phase shift method, have been proposed to solve the issue. While some of these setups perform well, they may also introduce new problems, such as poor phase map quality and low light efficiency. We present a sequential dual shearing shearographic system with good phase map quality and high light efficiency. Due to the SLM’s high-speed response, capable of reaching hundreds of hertz, SLM-based dual shearing direction shearography allows for fast temporal phase shifting and shearing direction switching while providing very good phase map quality. Unlike the spatial phase shift method, which has low light efficiency due to its need for a small aperture to enable a relatively large speckle size to cover multiple pixels, the proposed method is based on a fast temporal phase shift and does not have this limitation. In addition, SLM can provide a programmable and adjustable shearing method in any direction and distance, which is beneficial for strain measurements and NDT requiring strain measurements in different directions using a small and precise shearing distance. We describe in detail the theory derivation and non-destructive testing application results for the SLM-based dual shearing direction shearography system.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Rapid one-shot dual-shearing digital shearography using a spatial light modulator

Yonghong Wang, Keda Xu, Shuangle Wu, Yanfeng Yao, and Junrui Li
Appl. Opt. 62(20) 5360-5368 (2023)

Michelson interferometer based spatial phase shift shearography

Xin Xie, Lianxiang Yang, Nan Xu, and Xu Chen
Appl. Opt. 52(17) 4063-4071 (2013)

Dual-directional shearography based on a modified common-path configuration using spatial phase shift

Shengjia Wang, Jie Dong, Franziska Pöller, Xingchen Dong, Min Lu, Laura M. Bilgeri, Martin Jakobi, Félix Salazar-Bloise, and Alexander W. Koch
Appl. Opt. 58(3) 593-603 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.