Abstract

Reversible logic gates are capable of designing lossless digital systems, which have received a great deal of attention in photonic integrated circuits due to their advantages, such as less heat generation and low power dissipation. In this paper, all-optical reversible Feynman and Toffoli logic gates are designed for optical computing devices and low-power integrated circuits. Proposed designs of all-optical reversible logic gates are implemented with two-dimensional photonic crystal waveguides without using any nonlinear material. The finite-difference time-domain method is used to simulate and verify the proposed design, and it is operated at a wavelength of 1550 nm. The structure of all-optical reversible logic gates requires much less area, and Feynman logic gates offer a contrast ratio (CR) of 12.4 dB, transmittance of 0.96, and less insertion loss of ${-}{0.015}\;{\rm dB}$, while Toffoli logic gates offer a CR of 32.5 dB, transmittance of 0.9, and less insertion loss of ${-}{0.04}\;{\rm dB}$.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking

Dalai Gowri Sankar Rao, Venkatrao Palacharla, Sandip Swarnakar, and Santosh Kumar
Appl. Opt. 59(23) 7139-7143 (2020)

Optimized plasmonic reversible logic gate for low loss communication

Kuldeep Choudhary and Santosh Kumar
Appl. Opt. 60(16) 4567-4572 (2021)

Design of optical reversible logic gates using electro-optic effect of lithium niobate based Mach–Zehnder interferometers

Santosh Kumar, Chanderkanta, and Sanjeev Kumar Raghuwanshi
Appl. Opt. 55(21) 5693-5701 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Supplementary Material (1)

NameDescription
Supplement 1       Supplementary data

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription