Abstract

Based on the randomness of spontaneous emission, the statistical characteristics of phase noise are discussed. A theoretical analysis model, focusing on the amplitude randomness of spontaneous emission, is established to calculate laser phase noise. Then, the coherence of a laser before and after phase-locked control is calculated when an ideal laser and nonideal laser are used as a reference light in an optical phase-locked loop (OPLL). The effects of the amplitude randomness of spontaneous emission on phase-locked laser coherence are analyzed in detail. The results show that phase noise randomness increases with the increase of the expectation or variance of spontaneous emission amplitude, which represents amplitude randomness. When an ideal light is used as reference light, if the expectation and the variance of spontaneous emission amplitude are about 10 and 100, respectively, the time constant of an OPLL should be set as 1 ns, while a favorable noise suppression result can be achieved. However, to achieve a favorable noise suppression result, the time constant of an OPLL should be set as 0.1 ns when a nonideal laser is used as reference light.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Discussion on the effect of an optical phase-locked loop on the coherence properties of a laser

Fengli Cao and Rongzhu Zhang
J. Opt. Soc. Am. B 33(5) 910-914 (2016)

Influence of amplified spontaneous emission on laser linewidth in a fiber amplifier

Mingyuan Xue, Cunxiao Gao, Linquan Niu, Shaolan Zhu, and Chuandong Sun
Appl. Opt. 59(8) 2610-2614 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription