Abstract

High-power nanosecond laser pulses are usually spectrally broadened via temporal phase modulations to tackle the issue of stimulated Brillouin scattering and to achieve optical smoothing of the focal spot. While propagating along the beamline, such pulses can undergo frequency modulation to amplitude modulation (FM-to-AM) conversion. This phenomenon induces modulations of the optical power that can have a strong impact on laser performance. Interference filters are specific FM-to-AM conversion contributors that lead to high-frequency modulations that cannot be measured using conventional means. We propose an indirect method to investigate for such FM-to-AM contributors using spectral measurements. Further analysis of the collected data makes the quantification of the defining parameters of interference filters possible. In turn, we show that it is possible to estimate the range of power modulations induced by interference filters.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
FM-to-AM conversion in high-power lasers

Steve Hocquet, Denis Penninckx, Edouard Bordenave, Claude Gouédard, and Yves Jaouën
Appl. Opt. 47(18) 3338-3349 (2008)

Compensation of FM-to-AM conversion in high-power lasers

Huabao Cao, Xingqiang Lu, Linbo Li, Xianhua Yin, Weixin Ma, Jian Zhu, and Dianyuan Fan
Appl. Opt. 50(20) 3609-3614 (2011)

Random and pseudo-random phase modulations for FM-to-AM reduction in high power lasers

Martin Rabault, Jacques Luce, and Denis Penninckx
Appl. Opt. 57(31) 9287-9295 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription