Abstract

Hyperspectral anomaly detection has garnered much research in recent years due to the excellent detection ability of hyperspectral remote sensing in agriculture, forestry, geological surveys, environmental monitoring, and battlefield target detection. The traditional anomaly detection method ignores the non-linearity and complexity of the hyperspectral image (HSI), while making use of the effectiveness of spatial information rarely. Besides, the anomalous pixels and the background are mixed, which causes a higher false alarm rate in the detection result. In this paper, a hyperspectral deep net-based anomaly detector using weight adjustment strategy (WAHyperDNet) is proposed to circumvent the above issues. We leverage three-dimensional convolution instead of the two-dimensional convolution to get a better way of handling high-dimensional data. In this study, the determinative spectrum–spatial features are extracted across the correlation between HSI pixels. Moreover, feature weights in the method are automatically generated based on absolute distance and the spectral similarity angle to describe the differences between the background pixels and the pixels to be tested. Experimental results on five public datasets show that the proposed approach outperforms the state-of-the-art baselines in both effectiveness and efficiency.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Tensor decomposition-based sparsity divergence index for hyperspectral anomaly detection

Lili Zhang and Chunhui Zhao
J. Opt. Soc. Am. A 34(9) 1585-1594 (2017)

Spectral anomaly detection in deep shadows

Andrey V. Kanaev and Jeremy Murray-Krezan
Appl. Opt. 49(9) 1614-1622 (2010)

Hyperspectral target detection via discrete wavelet-based spectral fringe-adjusted joint transform correlation

Adel A. Sakla, Wesam A. Sakla, and Mohammad S. Alam
Appl. Opt. 50(28) 5545-5554 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription