Abstract

A linearly swept laser source over broadband with a fast sweep rate and narrow linewidth is realized using a novel optoelectronic scheme based on a multi-wavelengths (mutually coherent) injected distributed feedback (DFB) laser. Under the condition of multi-wavelengths injection, the injection-locking and four-wave mixing (FWM) process can occur simultaneously in the DFB laser, inducing a swept laser source with a sweep range of 100 GHz and sweep rate of 10 THz/s. Furthermore, with the phase noise character analyzation of the swept laser source, the phase noise deterioration due to the radio frequency (RF) signal is studied quantitatively. Besides the influence of the RF signal noise, the phase noise deterioration in the FWM process can be suppressed completely with the phase-locked pump beam and signal beam based on the injection-locking principle. This low phase noise swept laser source with sub-kilohertz linewidth could have wide applications in lidar.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking

Fang Wei, Bin Lu, Jian Wang, Dan Xu, Zhengqing Pan, Dijun Chen, Haiwen Cai, and Ronghui Qu
Opt. Express 23(4) 4970-4980 (2015)

Narrow-linewidth swept laser phase reconstruction and noise measurement technology and its applications

Xi Zhang, Fei Yang, Zitong Feng, Fang Wei, Haiwen Cai, and Ronghui Qu
Opt. Express 26(25) 32958-32970 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription