Abstract

The orbital angular moment (OAM) of light has been proved to be useful in plenty of applications. By transmitting the OAM of the focused light field to a particle, it will be orbited around the optical axis. Therefore, it is necessary to study the OAM distribution of the focused light field used to manipulate the particles. In this application, the widely used paraxial approximation is no longer sufficient due to the tightly focused beam. We employ the higher-order Poincaré sphere to represent the Laguerre–Gaussian (LG) beams with arbitrary polarization. Then the Rayleigh–Sommerfeld integral method and the $ q $-parameter method are used to derive the analytical expression of the light field on the focal plane. Based on this, the OAM density expression of the tightly focused LG beam is derived. In the numerical simulation, we study and analyze the unique intensity distributions and OAM distributions of tightly focused linear polarized, radial polarized, and circular polarized LG beams. The results could be leveraged to further explore the applications of the polarized vortex beam.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamical characteristics of Laguerre–Gaussian vortex beams upon reflection and refraction

Zhiwei Cui, Yuanfei Hui, Wanqi Ma, Wenjuan Zhao, and Yiping Han
J. Opt. Soc. Am. B 37(12) 3730-3740 (2020)

Orbital angular momentum and paraxial propagation characteristics of non-coaxial Laguerre–Gaussian beams

Chaohong Huang, Yishu Zheng, and Hanqing Li
J. Opt. Soc. Am. A 33(11) 2137-2143 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription