Abstract

The combination of single-pixel-imaging and single-photon-counting technology can achieve ultrahigh-sensitivity photon-counting imaging. However, its applications in high-resolution and real-time scenarios are limited by the long sampling and reconstruction time. Deep-learning-based compressive sensing provides an effective solution due to its ability to achieve fast and high-quality reconstruction. This paper proposes a sampling and reconstruction integrated neural network for single-photon-counting compressive imaging. To effectively remove the blocking artefact, a subpixel convolutional layer is jointly trained with a deep reconstruction network to imitate compressed sampling. By modifying the forward and backward propagation of the network, the first layer is trained into a binary matrix, which can be applied to the imaging system. An improved deep-reconstruction network based on the traditional Inception network is proposed, and the experimental results show that its reconstruction quality is better than existing deep-learning-based compressive sensing reconstruction algorithms.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Supplement 1       This document includes the experimental result which responses to the point 4 of main comments of reviewer 1

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription