Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design optimization of orbital angular momentum fibers using the gray wolf optimizer

Not Accessible

Your library or personal account may give you access

Abstract

Optical data communication based on the orbital angular momentum (OAM) of light is a recently proposed method to enhance the transmission capacity of optical fibers. This requires a new type of optical fiber, the main part of the optical communication system, to be designed. Typically, these fibers have a ring-shaped refractive index profile. We aim to find an optimized cross section refractive index profile for an OAM fiber in which the number of supported OAM modes (channels), mode purity, and the effective refractive index separation of OAM modes to other fibers modes are maximized. However, the complexity of the relationship between structural parameters and optical transmission properties of these fibers has resulted in the lack of a comprehensive analytical method to design them. In this paper, we investigate the process of designing OAM fibers and propose a framework to design such fibers by using artificial intelligence optimizers. It is worth mentioning here that this problem is intrinsically a multiobjective optimization problem, and the actual solution for such problems is not unique and leads to a set of optimum solutions. Therefore, at the end of the optimization process, a wide range of optimal designs will be obtained in which a trade-off is established in each of the solutions. We solve this problem with the multiobjective gray wolf optimizer (GWO) and compare the results with that of the single-objective GWO. The framework can easily find many optimal designs that support more than 20 OAM modes. The obtained results show that the proposed method is comprehensive and can optimize the structure of any OAM fibers. No human involvement, simplicity, and being straightforward are the main advantages of the proposed framework.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber

Junwei Zhang, Junyi Liu, Lei Shen, Lei Zhang, Jie Luo, Jie Liu, and Siyuan Yu
Photon. Res. 8(7) 1236-1242 (2020)

Directional coupler design for orbital angular momentum mode-based photonic integrated circuits

In Joon Lee and Sangin Kim
Opt. Express 28(20) 30085-30093 (2020)

Design tool for circular photonic crystal fibers supporting orbital angular momentum modes

Hui Li, Hu Zhang, Xiaoguang Zhang, Zhuo Zhang, Lixia Xi, Xianfeng Tang, Wenbo Zhang, and Xia Zhang
Appl. Opt. 57(10) 2474-2481 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved