Abstract

In this paper, we propose an efficient double-layered flat fiber (DLFF) plasmonic refractive index sensor having high resolution and linearity. Thin gold film is used as surface plasmon resonance (SPR) active material protected by a titanium dioxide layer, both deposited on the upper flat surface of DLFF. The sensor consists of an analyte channel in the central core hole as well as on the top of the fiber. Structural parameters of DLFF and thickness of gold and titanium dioxide layer are analyzed based on the finite element method. The optimized structure is studied based on wavelength and amplitude interrogation techniques in the near-infrared region. Numerical results show average wavelength sensitivity of 12172 nm/RIU with a resolution of ${8.21} \times {{10}^{ - 6}}\,\,{\rm RIU}$ (refractive index unit) in the highly refractive index (RI) range from 1.445 to 1.490. Further, amplitude sensitivity of this probe is found to be ${2910}\,\,{{\rm RIU}^ {- 1}}$ with a resolution of ${3.44} \times {{10}^{ - 6}}\,\,{\rm RIU}$, which is the highest among all reported PCF SPR sensors, as per the authors’ best knowledge. Compared with traditional photonic crystal fiber, the designed DLFF makes the sensor configuration simple to fabricate as well as a potential candidate for developing biochemical sensors and portable devices.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor

Ahmmed A. Rifat, G. A. Mahdiraji, Yong Meng Sua, Rajib Ahmed, Y. G. Shee, and F. R. Mahamd Adikan
Opt. Express 24(3) 2485-2495 (2016)

Surface plasmon resonance biosensor based on hexagonal lattice dual-core photonic crystal fiber

Tanvir Ahmed, Alok Kumar Paul, Md. Shamim Anower, and S. M. Abdur Razzak
Appl. Opt. 58(31) 8416-8422 (2019)

Dual-polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor

Mohammad Rakibul Islam, A. N. M. Iftekher, Kazi Rakibul Hasan, Md. Julkar Nayen, and Saimon Bin Islam
Appl. Opt. 59(11) 3296-3305 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription