Abstract

Because the physical properties of lithium niobate (${{\rm LiNbO}_3}$) strongly depend on composition, accurate and convenient methods for the determination of the composition are of great significance. Although several optical methods, including the measurement of UV absorption edge, the birefringence, and the second-harmonic generation, have been proved to be convenient for an accurate and fast standard determination of composition in ${{\rm LiNbO}_3}$ single crystals, their research and commercial applications are limited by the doping component and the complex nonlinear relationships. Based on preliminary work, a novel optical method to determine the composition of ${{\rm LiNbO}_3}$ crystals by digital holography is proposed. This method is based on the static internal field, which is obtained by means of the three-dimensional (3D) static measurement of the phase difference between antiparallel poling states without applying external voltage by digital holography. In order to investigate the influences of composition and doping on the static internal field in ${{\rm LiNbO}_3}$ crystals, the measured static internal fields from various ${{\rm LiNbO}_3}$ samples with different stoichiometry, doping type, and doping level are summarized and compared. Excluding the influence of dopant, the composition has been proved to be a unique key influencing factor on the static internal field in ${{\rm LiNbO}_3}$ crystals. A systematic measurement based on the static internal field from various sources with compositions ranging from 48.5 to 49.9 mol.% (${\rm Li}/[{\rm Li} + {\rm Nb}]$ ratio) has been carried out. The approximate linear fit between the static internal field and composition can provide an easy, reliable, and sensitive determination of the composition in undoped and doped ${{\rm LiNbO}_3}$ samples.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo, L. Sansone, D. Alfieri, and P. De Natale
Opt. Lett. 30(13) 1671-1673 (2005)

On the origin of internal field in Lithium Niobate crystals directly observed by digital holography

Melania Paturzo, Pietro Ferraro, Simonetta Grilli, Domenico Alfieri, Paolo De Natale, Marella de Angelis, Andrea Finizio, Sergio De Nicola, Giovanni Pierattini, Federico Caccavale, David Callejo, and Alessandro Morbiato
Opt. Express 13(14) 5416-5423 (2005)

Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics

Yasunori Furukawa, Kenji Kitamura, Shunji Takekawa, Kazuo Niwa, and Hideki Hatano
Opt. Lett. 23(24) 1892-1894 (1998)

References

  • View by:
  • |
  • |
  • |

  1. M. Wohlecke, K. Betzler, and G. Corradi, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
    [Crossref]
  2. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
    [Crossref]
  3. L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. WöhleckeIf, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
    [Crossref]
  4. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
    [Crossref]
  5. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wiihlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys. A 56, 311–315 (1993).
    [Crossref]
  6. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
    [Crossref]
  7. W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
    [Crossref]
  8. D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
    [Crossref]
  9. L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [Crossref]
  10. V. Gopalan and M. C. Gupta, “Observation of internal field in LiTaO3 single crystals: its origin and time-temperature dependence,” Appl. Phys. Lett. 68, 888–890 (1996).
    [Crossref]
  11. V. Gopalan, T. E. Mitchell, K. Kitamura, and N. Furukawa, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
    [Crossref]
  12. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
    [Crossref]
  13. V. Gopalan, T. E. Mitchell, and K. E. Sickafus, “Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals,” Solid State Commun. 109, 111–117 (1999).
    [Crossref]
  14. V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
    [Crossref]
  15. V. Gopalan and M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
    [Crossref]
  16. J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77, 2391–2393 (2000).
    [Crossref]
  17. M. L. Hu, L. J. Hu, and J. Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42, 7414–7417 (2003).
    [Crossref]
  18. C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
    [Crossref]
  19. M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
    [Crossref]
  20. H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys. A 65, 437–438 (1997).
    [Crossref]
  21. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, and G. Pierattini, “On the origin of internal field in lithium niobate crystals directly observed by digital holography,” Opt. Express 13, 5416–5423 (2005).
    [Crossref]
  22. T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids, 61, 275–282 (2000).
    [Crossref]
  23. R. Das, S. Ghosh, and R. Chakraborty, “Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability,” J. Appl. Phys. 115, 243101 (2014).
    [Crossref]
  24. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref]
  25. Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
    [Crossref]
  26. Y. N. Zhi, D. A. Liu, W. J. Qu, Z. Luan, and L. R. Liu, “Investigation of effective internal field in congruent lithium niobate crystal by digital holographic interferometry,” Appl. Phys. Lett. 90, 032903 (2007).
    [Crossref]
  27. M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
    [Crossref]
  28. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo, L. Sansone, D. Alfieri, and P. De Natale, “Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography,” Opt. Lett. 30, 1671–1673 (2005).
    [Crossref]
  29. R. Vander, S. G. Lipson, and L. Leizerson, “Fourier fringe analysis with improved spatial resolution,” Appl. Opt. 42, 6830–6837 (2003).
    [Crossref]
  30. P. Minzioni, L. L. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
    [Crossref]
  31. Y. N. Zhi, D. A. Liu, Y. Zhou, Z. F. Chai, and L. R. Liu, “Electrochromism accompanying ferroelectric domain inversion in congruent RuO2:LiNbO3 crystal,” Opt. Express 13, 10172–10181 (2005).
    [Crossref]
  32. Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
    [Crossref]
  33. S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90, 2949–2963 (2001).
    [Crossref]
  34. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
    [Crossref]
  35. Y. L. Chen, W. G. Yan, J. Guo, S. L. Chen, G. Y. Zhang, and Z. R. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett. 87, 212904 (2005).
    [Crossref]

2014 (1)

R. Das, S. Ghosh, and R. Chakraborty, “Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability,” J. Appl. Phys. 115, 243101 (2014).
[Crossref]

2011 (1)

W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
[Crossref]

2009 (2)

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

2007 (3)

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
[Crossref]

P. Minzioni, L. L. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
[Crossref]

Y. N. Zhi, D. A. Liu, W. J. Qu, Z. Luan, and L. R. Liu, “Investigation of effective internal field in congruent lithium niobate crystal by digital holographic interferometry,” Appl. Phys. Lett. 90, 032903 (2007).
[Crossref]

2005 (4)

2003 (4)

R. Vander, S. G. Lipson, and L. Leizerson, “Fourier fringe analysis with improved spatial resolution,” Appl. Opt. 42, 6830–6837 (2003).
[Crossref]

M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
[Crossref]

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[Crossref]

M. L. Hu, L. J. Hu, and J. Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42, 7414–7417 (2003).
[Crossref]

2002 (1)

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

2001 (1)

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90, 2949–2963 (2001).
[Crossref]

2000 (3)

T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids, 61, 275–282 (2000).
[Crossref]

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77, 2391–2393 (2000).
[Crossref]

1999 (1)

V. Gopalan, T. E. Mitchell, and K. E. Sickafus, “Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals,” Solid State Commun. 109, 111–117 (1999).
[Crossref]

1998 (3)

V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[Crossref]

V. Gopalan, T. E. Mitchell, K. Kitamura, and N. Furukawa, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[Crossref]

1997 (3)

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. WöhleckeIf, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys. A 65, 437–438 (1997).
[Crossref]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref]

1996 (4)

L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[Crossref]

L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[Crossref]

V. Gopalan and M. C. Gupta, “Observation of internal field in LiTaO3 single crystals: its origin and time-temperature dependence,” Appl. Phys. Lett. 68, 888–890 (1996).
[Crossref]

M. Wohlecke, K. Betzler, and G. Corradi, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[Crossref]

V. Gopalan and M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[Crossref]

1993 (3)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
[Crossref]

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wiihlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys. A 56, 311–315 (1993).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[Crossref]

1992 (1)

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

Alfieri, D.

Battle, C. C.

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

Betzler, K.

M. Wohlecke, K. Betzler, and G. Corradi, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
[Crossref]

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wiihlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys. A 56, 311–315 (1993).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[Crossref]

Bordui, P. F.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

Borkacy, K.

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

Bosenberg, W. R.

Buse, K.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[Crossref]

M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
[Crossref]

Byer, R. L.

Cha, M.

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77, 2391–2393 (2000).
[Crossref]

Chai, Z. F.

Chakraborty, R.

R. Das, S. Ghosh, and R. Chakraborty, “Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability,” J. Appl. Phys. 115, 243101 (2014).
[Crossref]

Chandramani, P.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

Chang, J. Y.

M. L. Hu, L. J. Hu, and J. Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42, 7414–7417 (2003).
[Crossref]

Chen, H.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Chen, S. L.

Y. L. Chen, W. G. Yan, J. Guo, S. L. Chen, G. Y. Zhang, and Z. R. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett. 87, 212904 (2005).
[Crossref]

Chen, Y. L.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Y. L. Chen, W. G. Yan, J. Guo, S. L. Chen, G. Y. Zhang, and Z. R. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett. 87, 212904 (2005).
[Crossref]

Corradi, G.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. WöhleckeIf, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

M. Wohlecke, K. Betzler, and G. Corradi, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[Crossref]

Cristiani, L. L.

Das, R.

R. Das, S. Ghosh, and R. Chakraborty, “Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability,” J. Appl. Phys. 115, 243101 (2014).
[Crossref]

de Angelis, M.

De Natale, P.

De Nicola, S.

Degiorgio, V.

W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
[Crossref]

P. Minzioni, L. L. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
[Crossref]

Dierolf, V.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
[Crossref]

Eckardt, R. C.

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[Crossref]

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

Ferraro, P.

Finizio, A.

Furukawa, N.

V. Gopalan, T. E. Mitchell, K. Kitamura, and N. Furukawa, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

Furukawa, Y.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90, 2949–2963 (2001).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[Crossref]

Gahagan, K. T.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

Galinetto, P.

W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
[Crossref]

Geng, F.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Ghosh, S.

R. Das, S. Ghosh, and R. Chakraborty, “Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability,” J. Appl. Phys. 115, 243101 (2014).
[Crossref]

Gopalan, V.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
[Crossref]

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90, 2949–2963 (2001).
[Crossref]

T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids, 61, 275–282 (2000).
[Crossref]

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

V. Gopalan, T. E. Mitchell, and K. E. Sickafus, “Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals,” Solid State Commun. 109, 111–117 (1999).
[Crossref]

V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[Crossref]

V. Gopalan, T. E. Mitchell, K. Kitamura, and N. Furukawa, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

V. Gopalan and M. C. Gupta, “Observation of internal field in LiTaO3 single crystals: its origin and time-temperature dependence,” Appl. Phys. Lett. 68, 888–890 (1996).
[Crossref]

V. Gopalan and M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[Crossref]

Grilli, S.

Guo, J.

Y. L. Chen, W. G. Yan, J. Guo, S. L. Chen, G. Y. Zhang, and Z. R. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett. 87, 212904 (2005).
[Crossref]

Gupta, M. C.

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

V. Gopalan and M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[Crossref]

V. Gopalan and M. C. Gupta, “Observation of internal field in LiTaO3 single crystals: its origin and time-temperature dependence,” Appl. Phys. Lett. 68, 888–890 (1996).
[Crossref]

Hartwig, U.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[Crossref]

Hu, L. J.

M. L. Hu, L. J. Hu, and J. Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42, 7414–7417 (2003).
[Crossref]

Hu, M. L.

M. L. Hu, L. J. Hu, and J. Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42, 7414–7417 (2003).
[Crossref]

Jia, Q. X.

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

Jundt, D. H.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

Kiamilev, F.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

Kim, S.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90, 2949–2963 (2001).
[Crossref]

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

Kitamura, K.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90, 2949–2963 (2001).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[Crossref]

V. Gopalan, T. E. Mitchell, K. Kitamura, and N. Furukawa, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

Klauer, S.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wiihlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys. A 56, 311–315 (1993).
[Crossref]

Kokanyan, E. P.

Kong, H. K.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Kovács, L.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. WöhleckeIf, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

Leizerson, L.

Lipson, S. G.

Liu, D. A.

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

Y. N. Zhi, D. A. Liu, W. J. Qu, Z. Luan, and L. R. Liu, “Investigation of effective internal field in congruent lithium niobate crystal by digital holographic interferometry,” Appl. Phys. Lett. 90, 032903 (2007).
[Crossref]

Y. N. Zhi, D. A. Liu, Y. Zhou, Z. F. Chai, and L. R. Liu, “Electrochromism accompanying ferroelectric domain inversion in congruent RuO2:LiNbO3 crystal,” Opt. Express 13, 10172–10181 (2005).
[Crossref]

Liu, G.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Liu, L. R.

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

Y. N. Zhi, D. A. Liu, W. J. Qu, Z. Luan, and L. R. Liu, “Investigation of effective internal field in congruent lithium niobate crystal by digital holographic interferometry,” Appl. Phys. Lett. 90, 032903 (2007).
[Crossref]

Y. N. Zhi, D. A. Liu, Y. Zhou, Z. F. Chai, and L. R. Liu, “Electrochromism accompanying ferroelectric domain inversion in congruent RuO2:LiNbO3 crystal,” Opt. Express 13, 10172–10181 (2005).
[Crossref]

Luan, Z.

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

Y. N. Zhi, D. A. Liu, W. J. Qu, Z. Luan, and L. R. Liu, “Investigation of effective internal field in congruent lithium niobate crystal by digital holographic interferometry,” Appl. Phys. Lett. 90, 032903 (2007).
[Crossref]

Luennemann, M.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[Crossref]

Ming, N. B.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys. A 65, 437–438 (1997).
[Crossref]

Minzioni, P.

W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
[Crossref]

P. Minzioni, L. L. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of hafnium-doped lithium-niobate crystals,” Opt. Express 15, 14171–14176 (2007).
[Crossref]

Mitchell, T. E.

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

V. Gopalan, T. E. Mitchell, and K. E. Sickafus, “Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals,” Solid State Commun. 109, 111–117 (1999).
[Crossref]

V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[Crossref]

V. Gopalan, T. E. Mitchell, K. Kitamura, and N. Furukawa, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

Mohideen, U.

T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids, 61, 275–282 (2000).
[Crossref]

Muhammad, F.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

Müller, M.

M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
[Crossref]

Myers, L. E.

Nava, G.

W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
[Crossref]

Niwa, K.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[Crossref]

Norwood, R. G.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

Pan, J. X.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Panotopoulos, G.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[Crossref]

Parravicini, J.

Paturzo, M.

Pierattini, G.

Polgár, K.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. WöhleckeIf, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

Qu, W. J.

Y. N. Zhi, D. A. Liu, W. J. Qu, Z. Luan, and L. R. Liu, “Investigation of effective internal field in congruent lithium niobate crystal by digital holographic interferometry,” Appl. Phys. Lett. 90, 032903 (2007).
[Crossref]

Ro, J. H.

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77, 2391–2393 (2000).
[Crossref]

Robinson, J. M.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

Ruschhaupt, G.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. WöhleckeIf, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

Sander, R.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

Sansone, L.

Schlarb, U.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
[Crossref]

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wiihlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys. A 56, 311–315 (1993).
[Crossref]

Scrymgeour, D. A.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
[Crossref]

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

Sharan, A.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

Shi, E. W.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Shi, L.

W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
[Crossref]

Sickafus, K. E.

V. Gopalan, T. E. Mitchell, and K. E. Sickafus, “Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals,” Solid State Commun. 109, 111–117 (1999).
[Crossref]

Soergel, E.

M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
[Crossref]

Sun, J. F.

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

Swart, P.

T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids, 61, 275–282 (2000).
[Crossref]

Tu, X. N.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Vander, R.

Wang, H. F.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys. A 65, 437–438 (1997).
[Crossref]

Wengler, M. C.

M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
[Crossref]

Wesselmann, M.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wiihlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys. A 56, 311–315 (1993).
[Crossref]

Wiihlecke, M.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wiihlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys. A 56, 311–315 (1993).
[Crossref]

Wohlecke, M.

M. Wohlecke, K. Betzler, and G. Corradi, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[Crossref]

WöhleckeIf, M.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. WöhleckeIf, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

Xia, Z. R.

Y. L. Chen, W. G. Yan, J. Guo, S. L. Chen, G. Y. Zhang, and Z. R. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett. 87, 212904 (2005).
[Crossref]

Yamaguchi, I.

Yan, A. M.

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

Yan, W.

W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
[Crossref]

Yan, W. G.

Y. L. Chen, W. G. Yan, J. Guo, S. L. Chen, G. Y. Zhang, and Z. R. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett. 87, 212904 (2005).
[Crossref]

Yang, T. J.

T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids, 61, 275–282 (2000).
[Crossref]

Yu, J.

Zhan, H.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Zhang, G. Y.

Y. L. Chen, W. G. Yan, J. Guo, S. L. Chen, G. Y. Zhang, and Z. R. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett. 87, 212904 (2005).
[Crossref]

Zhang, T.

Zhang, Y.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Zheng, Y. Q.

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

Zhi, Y. N.

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

Y. N. Zhi, D. A. Liu, W. J. Qu, Z. Luan, and L. R. Liu, “Investigation of effective internal field in congruent lithium niobate crystal by digital holographic interferometry,” Appl. Phys. Lett. 90, 032903 (2007).
[Crossref]

Y. N. Zhi, D. A. Liu, Y. Zhou, Z. F. Chai, and L. R. Liu, “Electrochromism accompanying ferroelectric domain inversion in congruent RuO2:LiNbO3 crystal,” Opt. Express 13, 10172–10181 (2005).
[Crossref]

Zhou, Y.

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

Y. N. Zhi, D. A. Liu, Y. Zhou, Z. F. Chai, and L. R. Liu, “Electrochromism accompanying ferroelectric domain inversion in congruent RuO2:LiNbO3 crystal,” Opt. Express 13, 10172–10181 (2005).
[Crossref]

Zhu, S. N.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys. A 65, 437–438 (1997).
[Crossref]

Zhu, Y. Y.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys. A 65, 437–438 (1997).
[Crossref]

Annu. Rev. Mater. Res. (1)

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37, 449–489 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (2)

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys. A 65, 437–438 (1997).
[Crossref]

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wiihlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys. A 56, 311–315 (1993).
[Crossref]

Appl. Phys. B (3)

M. C. Wengler, M. Müller, E. Soergel, and K. Buse, “Poling dynamics of lithium niobate crystals,” Appl. Phys. B 76, 393–396 (2003).
[Crossref]

M. Wohlecke, K. Betzler, and G. Corradi, “Optical methods to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[Crossref]

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003).
[Crossref]

Appl. Phys. Lett. (10)

Y. N. Zhi, D. A. Liu, W. J. Qu, Z. Luan, and L. R. Liu, “Investigation of effective internal field in congruent lithium niobate crystal by digital holographic interferometry,” Appl. Phys. Lett. 90, 032903 (2007).
[Crossref]

Y. L. Chen, W. G. Yan, J. Guo, S. L. Chen, G. Y. Zhang, and Z. R. Xia, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett. 87, 212904 (2005).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. WöhleckeIf, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997).
[Crossref]

W. Yan, P. Minzioni, G. Nava, P. Galinetto, L. Shi, and V. Degiorgio, “Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties,” Appl. Phys. Lett. 98, 151112 (2011).
[Crossref]

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[Crossref]

V. Gopalan and M. C. Gupta, “Observation of internal field in LiTaO3 single crystals: its origin and time-temperature dependence,” Appl. Phys. Lett. 68, 888–890 (1996).
[Crossref]

V. Gopalan, T. E. Mitchell, K. Kitamura, and N. Furukawa, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72, 1981–1983 (1998).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[Crossref]

C. C. Battle, S. Kim, V. Gopalan, K. Borkacy, M. C. Gupta, Q. X. Jia, and T. E. Mitchell, “Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures,” Appl. Phys. Lett. 76, 2436–2438 (2000).
[Crossref]

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77, 2391–2393 (2000).
[Crossref]

J. Appl. Phys. (7)

V. Gopalan and T. E. Mitchell, “Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[Crossref]

V. Gopalan and M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
[Crossref]

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[Crossref]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90, 2949–2963 (2001).
[Crossref]

R. Das, S. Ghosh, and R. Chakraborty, “Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability,” J. Appl. Phys. 115, 243101 (2014).
[Crossref]

Y. N. Zhi, D. A. Liu, J. F. Sun, A. M. Yan, Y. Zhou, Z. Luan, and L. R. Liu, “Phase mapping of domain kinetics in lithium niobate by digital holographic interferometry,” J. Appl. Phys. 105, 024106 (2009).
[Crossref]

J. Cryst. Growth (1)

Y. Q. Zheng, H. K. Kong, H. Chen, X. N. Tu, E. W. Shi, Y. L. Chen, H. Zhan, G. Liu, F. Geng, Y. Zhang, and J. X. Pan, “Single crystal growth of MgO-doped near-stoichiometric lithium niobate crystals and fabrication of Ti: PPLN devices,” J. Cryst. Growth 311, 892–894 (2009).
[Crossref]

J. Phys. Chem. Solids (1)

T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids, 61, 275–282 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. L. Hu, L. J. Hu, and J. Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42, 7414–7417 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[Crossref]

Solid State Commun. (1)

V. Gopalan, T. E. Mitchell, and K. E. Sickafus, “Switching kinetics of 180° domains in congruent LiNbO3 and LiTaO3 crystals,” Solid State Commun. 109, 111–117 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic diagram of the measurement principle by digital holography. The two antiparallel domain states are presented. The antiparallel spontaneous polarizations are labeled as ${{ P}_S}$ and $ - {{ P}_S}$ . The uniform electric field $ E $ is applied, and the different phase retardations are obtained as $ \Delta \varphi $ . $ l $ is the thickness of the crystal wafer.
Fig. 2.
Fig. 2. Flow chart of algorithm. FFT2, two-dimensional (2D) fast Fourier transform; IFFT2, 2D inverse fast Fourier transform.
Fig. 3.
Fig. 3. (a) Spectra of the recorded digital hologram, including zero-order $A$ (circled by red dotted line), positive first-order ${C_{ + 1}}$ (circled by green dotted line), and negative first-order ${C_{ - 1}}$ (circled by yellow dotted line). (b) Gaussian filter. (c) Filtered-out spectrum ${C_{ + 1}}$ . (d) Shifted spectrum ${C_{ + 1}}$ (circled by red dotted line) in the center of the calculated plane.
Fig. 4.
Fig. 4. (a) Schematic diagram of experimental device within a Mach–Zehnder interferometer. BS, beam splitter; SF, spatial filter; CL, collimating lens; L, lens; TR, total reflector; CCD, charge-coupled device. (b) Photograph of poling device.
Fig. 5.
Fig. 5. Schematic of original state and revered state separated by a 180° domain wall in a half-poled ${{\rm LiNbO}_3}$ . Ps, spontaneous polarization; ${{\rm E}_{\rm int}}$ , internal field; ${{\rm E}_{\rm ext}}$ , external electric field.
Fig. 6.
Fig. 6. (a) Hologram of original CLN (unpoled). (b) Hologram of partially poled CLN at 0 kV/mm external field. (c) Hologram of partially poled CLN at 3.0 kV/mm external field. (d) Reconstructed 3D phase map at 0 kV/mm external field across the crystal thickness in partially poled CLN. (e) Scanning line (red) selected across the domain wall in (d). (f) Reconstructed 3D phase map at 3.0 kV/mm external field cross the crystal thickness in partially poled CLN. (g) Scanning line (blue) selected across the domain wall in (f).
Fig. 7.
Fig. 7. Sequence of holograms are recorded with the linearly ramping applied field from 0.4 to 7.2 kV/mm.
Fig. 8.
Fig. 8. Reconstructed 3D phase map with the linearly ramping applied field from 0.4 to 7.2 kV/mm.
Fig. 9.
Fig. 9. Phase difference varies linearly with the uniform applied field from 0.4 to 7.2 kV/mm in partially poled CLN.
Fig. 10.
Fig. 10. Measured static internal field from various ${{\rm LiNbO}_3}$ sources with different doping type and doping level.
Fig. 11.
Fig. 11. Measured static internal field from various ${{\rm LiNbO}_3}$ sources with different stoichiometry.
Fig. 12.
Fig. 12. (a) 3D and (b) 2D phase distribution of a defect surrounded by an inverted hexagonally shaped domain in Mg-doped ${{\rm LiNbO}_3}$ at 0 kV/mm external field.
Fig. 13.
Fig. 13. Some of the bulk and wafer samples (without cutting and polishing) listed in Table 1. (a) Mg-CLN crystal blank; (b) SLN wafer; (c) several crystal blanks; (d) Ce-Cu-CLN wafer; (e) Ce-Mn-CLN wafer; (f) Ce-Rh-CLN wafer; (g) Cr-CLN wafer; (h) Cr-Cu-CLN wafer; (i) Cr-Mn-CLN wafer; (j) Fe-CLN wafer; (k) Fe-Mn-CLN wafer; (l) Fe-Ru-CLN wafer.

Tables (1)

Tables Icon

Table 1. Various L i N b O 3 Samples with Different Stoichiometry, Doping Type, and Doping Level

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ φ ( x , y ) = 2 [ 2 π λ Δ n l + 2 π λ ( n 0 n w ) Δ l ] = 2 π λ [ n o 3 γ 13 ( x , y ) + 2 ( n o n w ) k 33 ( x , y ) ] E l ,
k 33 = e 33 C 33 ,
O ( k Δ x H , l Δ y H ) = O 0 ( k Δ x H , l Δ y H ) × exp { j [ φ r ( k Δ x H , l Δ y H ) ] } ,
r ( k Δ x H , l Δ y H ) = r 0 ( k Δ x H , l Δ y H ) × exp [ j ( 2 π ξ x Δ x H + 2 π ξ y Δ y H ) ] ,
i H ( k Δ x H , l Δ y H ) = a ( k Δ x H , l Δ y H ) + c ( k Δ x H , l Δ y H ) exp [ j 2 π ( ξ x Δ x H + ξ y Δ y H ) ] + c ( k Δ x H , l Δ y H ) exp [ j 2 π ( ξ x Δ x H + ξ y Δ y H ) ] ,
a ( k Δ x H , l Δ y H ) = O 0 2 ( k Δ x H , l Δ y H ) + r 0 2 ( k Δ x H , l Δ y H ) , c ( k Δ x H , l Δ y H ) = O 0 ( k Δ x H , l Δ y H ) r 0 ( k Δ x H , l Δ y H ) × exp [ j φ ( k Δ x H , l Δ y H ) ] ,
Δ x H = Δ y H = L x M = L y N .
I H ( p Δ ξ , q Δ η ) = F F T 2 { i H ( k Δ x H , l Δ y H ) } p , q = A ( p Δ ξ , q Δ η ) + C + 1 ( p Δ ξ ξ x , q Δ η ξ y ) + C 1 ( p Δ ξ + ξ x , q Δ η + ξ y ) ,
{ Δ ξ = 1 L x Δ η = 1 L y .
u d ( m Δ x , n Δ y ) = I F F T 2 { C + 1 ( p Δ ξ , q Δ η ) × exp [ j 2 π d λ 1 ( λ p Δ ξ ) 2 ( λ q Δ η ) 2 ] } m , n ,
{ Δ x = 1 M Δ ξ = Δ x H Δ y = 1 N Δ η = Δ y H .
φ r ( m Δ x , n Δ y ) = arctan ( I m [ u d ( m Δ x , n Δ y ) ] R e [ u d ( m Δ x , n Δ y ) ] ) .
φ r e c ( m Δ x , n Δ y ) = φ t ( m Δ x , n Δ y ) φ r ( m Δ x , n Δ y ) .

Metrics