Abstract

In this paper, we report a common-path, phase-shift optical microscope based on measurement of Stokes parameters ${{\rm S}_2}$ and ${{\rm S}_3}$ to extract the three-dimensional (3D) phase map of transparent objects with high precision. The microscope employs three polarizers and two identical quarter-wave plates to extract ${{\rm S}_2}$ and ${{\rm S}_3}$. The reference phase in the absence of the object is subtracted from the total phase in the presence of the object to extract the 3D phase of the object. The microscope is tested on imaging a USAF resolution test target and a reticle test pattern with excellent results. To the best of our knowledge, this is the first report of a common-path phase-shift optical microscope for 3D phase extraction based on measurement of Stokes parameters ${{\rm S}_2}$ and ${{\rm S}_3}$.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription