Abstract

Digital inline holography (DIH) has long been used to measure the three-dimensional (3D) distribution of micrometer particles in suspensions. However, DIH experiences a virtual image problem that limits the particle density and the placement of the hologram plane relative to the sample volume. Here, we apply virtual-image-free phase retrieval digital holography (PRDH) to detect opaque particles in 3D volumes that exceed $ 2000\;{\rm particles}/{{\rm mm}^3} $. PRDH is based on recording two holograms whose planes are displaced along the optical axis, and then reconstructing the complete optical waves estimated by the iterative phase retrieval algorithm. Both numerical and experimental tests are performed, and results show that PRDH recovers the original 3D particle distributions even when the hologram planes are within the particle suspensions. Moreover, compared to single-hologram-based DIH, PRDH is proved to have better particle detection qualities. The uncertainty in the localization of particle centers is reduced to less than one particle diameter.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Separating twin images in digital holographic microscopy using weak scatterers

Maxwell Shangraw and Hangjian Ling
Appl. Opt. 60(3) 626-634 (2021)

Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

Elise M. Hall, Brian S. Thurow, and Daniel R. Guildenbecher
Appl. Opt. 55(23) 6410-6420 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription