Abstract

In this paper, we describe a method used to determine the optical properties, namely, the effective scattering and absorption coefficients, employing an optimized three-dimensional-printed single integrating sphere. The paper consists of two parts, and in Part 1, the theoretical investigation of an optimized measurement and the evaluation routine are presented. Using an analytical and a numerical model for the optical characterization of the integrating sphere, errors caused by the application of a non-ideal sphere (the one with ports or baffles) were investigated. Considering this research, a procedure for the precise determination of the optical properties, based on Monte Carlo simulations of the light distribution within the sample, was developed. In Part 2, we present the experimental validation of this procedure.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier
Appl. Opt. 35(34) 6797-6809 (1996)

Integrating sphere designs with isotropic throughput

Keith A. Snail and Leonard M. Hanssen
Appl. Opt. 28(10) 1793-1799 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription