Abstract

This paper proposes and experimentally demonstrates a linearization technique for interferometric fiber sensors. From a 2D reconstruction of the interference spectra and subsequent denoising process, relevant improvements in linearity and range are obtained for both angle and liquid level sensors. This linearization technique can be easily implemented on any graphical interface of different types of interferometric sensors without requiring modification of the sensor physical structure, which makes it a low-cost solution. In this regard, this approach finds a wide field of applications. With the appropriate modifications, it can potentially be applied to other non-interferometric sensors that have moderate linearity and operating range.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical spectral intensity-based interrogation technique for liquid-level interferometric fiber sensors

Luís C. B. Silva, Lorenzo B. Scandian, Marcelo E. V. Segatto, and Carlos E. S. Castellani
Appl. Opt. 58(35) 9712-9717 (2019)

Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques

Huan Wu, Liang Wang, Zhiyong Zhao, Nan Guo, Chester Shu, and Chao Lu
Opt. Express 26(5) 5126-5139 (2018)

D-shaped silicon core fiber-based surface plasmon-resonance refractive index sensor in 2 µm

Yi-Lin Yu, Shien-Kuei Laiw, Hiroki Kishikawa, and Nobuo Goto
Appl. Opt. 59(18) 5539-5546 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription