Abstract

A mid-wave infrared (MWIR)/long-wave infrared (LWIR) dual-band zoom lens design with multilayer diffractive optical elements (MLDOEs) is presented. The mathematical relationship between the substrate material selection for dual-band MLDOE and polychromatic integral diffraction efficiency (PIDE) is deduced in the oblique incident situation, and further, a method for optimal selection of substrate material is proposed to obtain the high PIDE in an incident angle range. In the optimization process, the optimal substrate material combination is selected based on the proposed method, and the principle of lens material replacement is discussed. After optimization, the 5× hybrid dual-band infrared zoom system is obtained, which consists of seven lenses. The modulation transfer function values in all configurations are larger than 0.5 and 0.3 in MWIR and LWIR, respectively. The distortion values are less than 2% both in MWIR and LWIR for all configurations.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Substrate material selection method for multilayer diffractive optics in a wide environmental temperature range

Mingxu Piao, Qingfeng Cui, Chunzhu Zhao, Bo Zhang, Shan Mao, Yuanming Zhao, and Lidong Zhao
Appl. Opt. 56(10) 2826-2833 (2017)

Optimization method of multilayer diffractive optical elements with consideration of ambient temperature

Mingxu Piao, Qingfeng Cui, Bo Zhang, and Chunzhu Zhao
Appl. Opt. 57(30) 8861-8869 (2018)

Athermalization and thermal characteristics of multilayer diffractive optical elements

Ju Wang and Changxi Xue
Appl. Opt. 54(33) 9665-9670 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zou, F. S. Chau, and G. Zhou, “Ultra-compact optical zoom endoscope using solid tunable lenses,” Opt. Express 25, 20675–20688 (2017).
    [Crossref]
  2. A. Mikš and J. Novák, “Method of first-order analysis of a three-element two-conjugate zoom lens,” Appl. Opt. 56, 5301–5306 (2017).
    [Crossref]
  3. S. Jo and S. Park, “Design and analysis of an 8× four-group zoom system using focus tunable lenses,” Opt. Express 26, 13370–13382 (2018).
    [Crossref]
  4. J. N. Vizgaitis and A. Hastings, “Dual band infrared picture-in-picture systems,” Opt. Eng. 52, 061306 (2013).
    [Crossref]
  5. I. A. Neil, “Optical design dependence on technology development,” Opt. Eng. 50, 121706 (2011).
    [Crossref]
  6. D. Reshidko, P. Reshidko, and R. Carmeli, “Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband,” Proc. SPIE 9580, 95800C (2015).
    [Crossref]
  7. M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 2452–2461 (1995).
    [Crossref]
  8. M. Piao, Q. Cui, and B. Zhang, “Achromatic negative index lens with diffractive optics,” J. Opt. 17, 025608 (2015).
    [Crossref]
  9. C. Bigwood and A. Wood, “Two-element lenses for military applications,” Opt. Eng. 50, 121705 (2011).
    [Crossref]
  10. H. Liu, Z. Lu, J. Yue, and H. Zhang, “The characteristics of compound diffractive telescope,” Opt. Express 16, 16195–16201 (2008).
    [Crossref]
  11. G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design of plastic diffractive-refractive compact zoom lenses for visible-near-IR spectrum,” Appl. Opt. 52, 5843–5850 (2013).
    [Crossref]
  12. Y. Zhao, D. J. L. Williams, and P. McCarthy, “Chromatic correction for a VIS-SWIR zoom lens using optical glasses,” Proc. SPIE 9580, 95800E (2015).
    [Crossref]
  13. J. N. Vizgaitis, “Dual spectral-band optical lens imager,” U.S. patent9,091,840 (28July2015).
  14. Y. Nevo, “Dual-band optics,” Opt. Eng. 52, 053002 (2013).
    [Crossref]
  15. K. Dong, L. Zhang, J. Wang, H. Wang, Q. Sun, and Z. Lu, “Design of the infrared dual-band athermalized optical system based on HDE,” Proc. SPIE 7383, 73831B (2009).
    [Crossref]
  16. X. Li, J. Liu, and Y. Chen, “Design of dual-band, high zoom ratio and continuous co-focal optical system,” Acta Photon. Sin. 45, 1022003 (2016).
  17. T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), pp. 5–7.
  18. A. Wood, M. L. Lee, and S. Cassette, “Infrared hybrid optics with high broadband efficiency,” Proc. SPIE 5874, 58740G (2005).
    [Crossref]
  19. Y. G. Soskind, “Diffractive optics technologies in infrared systems,” Proc. SPIE 9451, 94511T (2015).
    [Crossref]
  20. M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
    [Crossref]
  21. L. Yang, C. Liu, and S. Li, “Optimal design of depth-scaling error for multilayer diffractive optical elements with oblique incidence,” Appl. Opt. 56, 4532–4536 (2017).
    [Crossref]
  22. G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure,” J. Opt. Technol. 82, 308–311 (2015).
    [Crossref]
  23. S. Mao, Q. Cui, M. Piao, and L. Zhao, “High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle,” Appl. Opt. 55, 3549–3554 (2016).
    [Crossref]
  24. H. Yang, C. Xue, C. Li, J. Wang, and R. Zhang, “Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements,” Appl. Opt. 55, 7126–7133 (2016).
    [Crossref]
  25. B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
    [Crossref]
  26. C. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34, 2469–2475 (1995).
    [Crossref]
  27. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).
    [Crossref]
  28. D. C. O’shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE, 2004).
  29. C. Xue, Q. Cui, T. Liu, L. Yang, and B. Fei, “Optimal design of a multilayer diffractive optical element for dual wavebands,” Opt. Lett. 35, 4157–4159 (2010).
    [Crossref]
  30. D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
    [Crossref]
  31. M. Erdtmann, L. Zhang, and G. Jin, “Uncooled dual-band MWIR/LWIR optical readout imager,” Proc. SPIE 6940, 694012 (2008).
    [Crossref]
  32. “RTD611WB,” http://www.iraytek.com/uploadfile/2016/1111/20161111112027304.pdf .
  33. M. J. Riedl, “Diamond-turned diffractive optical elements for the infrared: suggestion for specification standardization and manufacturing remarks,” Proc. SPIE 2540, 257–269 (1995).
    [Crossref]
  34. R. Bittner, “Tolerancing of single point diamond turned diffractive optical elements and optical surfaces,” J. Eur. Opt. Soc. 2, 07028 (2007).
    [Crossref]
  35. M. J. Riedl, Optical Design Fundamentals for Infrared Systems, 2nd ed. (SPIE, 2001).
  36. Y. Guimond and Y. Bellec, “A new moldable infrared glass for thermal imaging and low cost sensing,” Proc. SPIE 6542, 654225 (2007).
    [Crossref]
  37. “Infrared chalcogenide glasses,” http://www.us.schott.com/advanced_optics/english/products/optical-materials/ir-materials/infrared-chalcogenide-glasses/index.html .
  38. H. Yang, C. Xue, C. Li, and J. Wang, “Optimal design of multilayer diffractive optical elements with effective area method,” Appl. Opt. 55, 1675–1682 (2016).
    [Crossref]
  39. W. Wang, Contemporary Optical System Design (National Defense Industry, 2016).
  40. Y. Tamagawa and T. Tajime, “Dual-band optical systems with a projective athermal chart: design,” Appl. Opt. 36, 297–301 (1997).
    [Crossref]
  41. Zemax Development Corporation, “OpticStudio user manual” (2016).
  42. H. Zhang, H. Liu, Z. Lu, and H. Zhang, “Modified phase function model for kinoform lenses,” Appl. Opt. 47, 4055–4060 (2008).
    [Crossref]
  43. T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13, 035711 (2011).
    [Crossref]

2018 (2)

B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
[Crossref]

S. Jo and S. Park, “Design and analysis of an 8× four-group zoom system using focus tunable lenses,” Opt. Express 26, 13370–13382 (2018).
[Crossref]

2017 (3)

2016 (4)

2015 (5)

Y. Zhao, D. J. L. Williams, and P. McCarthy, “Chromatic correction for a VIS-SWIR zoom lens using optical glasses,” Proc. SPIE 9580, 95800E (2015).
[Crossref]

D. Reshidko, P. Reshidko, and R. Carmeli, “Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband,” Proc. SPIE 9580, 95800C (2015).
[Crossref]

M. Piao, Q. Cui, and B. Zhang, “Achromatic negative index lens with diffractive optics,” J. Opt. 17, 025608 (2015).
[Crossref]

Y. G. Soskind, “Diffractive optics technologies in infrared systems,” Proc. SPIE 9451, 94511T (2015).
[Crossref]

G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure,” J. Opt. Technol. 82, 308–311 (2015).
[Crossref]

2014 (1)

M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
[Crossref]

2013 (3)

J. N. Vizgaitis and A. Hastings, “Dual band infrared picture-in-picture systems,” Opt. Eng. 52, 061306 (2013).
[Crossref]

Y. Nevo, “Dual-band optics,” Opt. Eng. 52, 053002 (2013).
[Crossref]

G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design of plastic diffractive-refractive compact zoom lenses for visible-near-IR spectrum,” Appl. Opt. 52, 5843–5850 (2013).
[Crossref]

2011 (3)

I. A. Neil, “Optical design dependence on technology development,” Opt. Eng. 50, 121706 (2011).
[Crossref]

C. Bigwood and A. Wood, “Two-element lenses for military applications,” Opt. Eng. 50, 121705 (2011).
[Crossref]

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13, 035711 (2011).
[Crossref]

2010 (1)

2009 (1)

K. Dong, L. Zhang, J. Wang, H. Wang, Q. Sun, and Z. Lu, “Design of the infrared dual-band athermalized optical system based on HDE,” Proc. SPIE 7383, 73831B (2009).
[Crossref]

2008 (3)

2007 (2)

R. Bittner, “Tolerancing of single point diamond turned diffractive optical elements and optical surfaces,” J. Eur. Opt. Soc. 2, 07028 (2007).
[Crossref]

Y. Guimond and Y. Bellec, “A new moldable infrared glass for thermal imaging and low cost sensing,” Proc. SPIE 6542, 654225 (2007).
[Crossref]

2005 (1)

A. Wood, M. L. Lee, and S. Cassette, “Infrared hybrid optics with high broadband efficiency,” Proc. SPIE 5874, 58740G (2005).
[Crossref]

1997 (1)

1995 (4)

1992 (1)

Bellec, Y.

Y. Guimond and Y. Bellec, “A new moldable infrared glass for thermal imaging and low cost sensing,” Proc. SPIE 6542, 654225 (2007).
[Crossref]

Bigwood, C.

C. Bigwood and A. Wood, “Two-element lenses for military applications,” Opt. Eng. 50, 121705 (2011).
[Crossref]

Bittner, R.

R. Bittner, “Tolerancing of single point diamond turned diffractive optical elements and optical surfaces,” J. Eur. Opt. Soc. 2, 07028 (2007).
[Crossref]

Buralli, D. A.

Carmeli, R.

D. Reshidko, P. Reshidko, and R. Carmeli, “Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband,” Proc. SPIE 9580, 95800C (2015).
[Crossref]

Cassette, S.

A. Wood, M. L. Lee, and S. Cassette, “Infrared hybrid optics with high broadband efficiency,” Proc. SPIE 5874, 58740G (2005).
[Crossref]

Chau, F. S.

Chen, Y.

X. Li, J. Liu, and Y. Chen, “Design of dual-band, high zoom ratio and continuous co-focal optical system,” Acta Photon. Sin. 45, 1022003 (2016).

Cui, Q.

B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
[Crossref]

S. Mao, Q. Cui, M. Piao, and L. Zhao, “High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle,” Appl. Opt. 55, 3549–3554 (2016).
[Crossref]

M. Piao, Q. Cui, and B. Zhang, “Achromatic negative index lens with diffractive optics,” J. Opt. 17, 025608 (2015).
[Crossref]

C. Xue, Q. Cui, T. Liu, L. Yang, and B. Fei, “Optimal design of a multilayer diffractive optical element for dual wavebands,” Opt. Lett. 35, 4157–4159 (2010).
[Crossref]

Dong, K.

K. Dong, L. Zhang, J. Wang, H. Wang, Q. Sun, and Z. Lu, “Design of the infrared dual-band athermalized optical system based on HDE,” Proc. SPIE 7383, 73831B (2009).
[Crossref]

Erdtmann, M.

M. Erdtmann, L. Zhang, and G. Jin, “Uncooled dual-band MWIR/LWIR optical readout imager,” Proc. SPIE 6940, 694012 (2008).
[Crossref]

Ezhov, E. G.

Faklis, D.

Fei, B.

Greisukh, G. I.

Guimond, Y.

Y. Guimond and Y. Bellec, “A new moldable infrared glass for thermal imaging and low cost sensing,” Proc. SPIE 6542, 654225 (2007).
[Crossref]

Hastings, A.

J. N. Vizgaitis and A. Hastings, “Dual band infrared picture-in-picture systems,” Opt. Eng. 52, 061306 (2013).
[Crossref]

Hemeng, Q.

M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
[Crossref]

M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
[Crossref]

Jin, G.

M. Erdtmann, L. Zhang, and G. Jin, “Uncooled dual-band MWIR/LWIR optical readout imager,” Proc. SPIE 6940, 694012 (2008).
[Crossref]

Jizhen, Z.

M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
[Crossref]

Jo, S.

Kathman, A. D.

D. C. O’shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE, 2004).

Lee, M. L.

A. Wood, M. L. Lee, and S. Cassette, “Infrared hybrid optics with high broadband efficiency,” Proc. SPIE 5874, 58740G (2005).
[Crossref]

Li, C.

Li, S.

Li, X.

X. Li, J. Liu, and Y. Chen, “Design of dual-band, high zoom ratio and continuous co-focal optical system,” Acta Photon. Sin. 45, 1022003 (2016).

Lingjie, W.

M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
[Crossref]

Liu, C.

Liu, H.

Liu, J.

X. Li, J. Liu, and Y. Chen, “Design of dual-band, high zoom ratio and continuous co-focal optical system,” Acta Photon. Sin. 45, 1022003 (2016).

Liu, T.

Lu, Z.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13, 035711 (2011).
[Crossref]

K. Dong, L. Zhang, J. Wang, H. Wang, Q. Sun, and Z. Lu, “Design of the infrared dual-band athermalized optical system based on HDE,” Proc. SPIE 7383, 73831B (2009).
[Crossref]

H. Zhang, H. Liu, Z. Lu, and H. Zhang, “Modified phase function model for kinoform lenses,” Appl. Opt. 47, 4055–4060 (2008).
[Crossref]

H. Liu, Z. Lu, J. Yue, and H. Zhang, “The characteristics of compound diffractive telescope,” Opt. Express 16, 16195–16201 (2008).
[Crossref]

Mao, S.

McCarthy, P.

Y. Zhao, D. J. L. Williams, and P. McCarthy, “Chromatic correction for a VIS-SWIR zoom lens using optical glasses,” Proc. SPIE 9580, 95800E (2015).
[Crossref]

Mikš, A.

Missig, M. D.

Morris, G. M.

Nakai, T.

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), pp. 5–7.

Neil, I. A.

I. A. Neil, “Optical design dependence on technology development,” Opt. Eng. 50, 121706 (2011).
[Crossref]

Nevo, Y.

Y. Nevo, “Dual-band optics,” Opt. Eng. 52, 053002 (2013).
[Crossref]

Novák, J.

O’shea, D. C.

D. C. O’shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE, 2004).

Ogawa, H.

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), pp. 5–7.

Park, S.

Piao, M.

B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
[Crossref]

S. Mao, Q. Cui, M. Piao, and L. Zhao, “High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle,” Appl. Opt. 55, 3549–3554 (2016).
[Crossref]

M. Piao, Q. Cui, and B. Zhang, “Achromatic negative index lens with diffractive optics,” J. Opt. 17, 025608 (2015).
[Crossref]

Prather, D. W.

D. C. O’shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE, 2004).

Reshidko, D.

D. Reshidko, P. Reshidko, and R. Carmeli, “Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband,” Proc. SPIE 9580, 95800C (2015).
[Crossref]

Reshidko, P.

D. Reshidko, P. Reshidko, and R. Carmeli, “Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband,” Proc. SPIE 9580, 95800C (2015).
[Crossref]

Riedl, M. J.

M. J. Riedl, “Diamond-turned diffractive optical elements for the infrared: suggestion for specification standardization and manufacturing remarks,” Proc. SPIE 2540, 257–269 (1995).
[Crossref]

M. J. Riedl, Optical Design Fundamentals for Infrared Systems, 2nd ed. (SPIE, 2001).

Sidyakina, Z. A.

Sommargren, G. E.

Soskind, Y. G.

Y. G. Soskind, “Diffractive optics technologies in infrared systems,” Proc. SPIE 9451, 94511T (2015).
[Crossref]

Stepanov, S. A.

Suleski, T. J.

D. C. O’shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE, 2004).

Sun, Q.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13, 035711 (2011).
[Crossref]

K. Dong, L. Zhang, J. Wang, H. Wang, Q. Sun, and Z. Lu, “Design of the infrared dual-band athermalized optical system based on HDE,” Proc. SPIE 7383, 73831B (2009).
[Crossref]

Sweeney, C. W.

Tajime, T.

Tamagawa, Y.

Vizgaitis, J. N.

J. N. Vizgaitis and A. Hastings, “Dual band infrared picture-in-picture systems,” Opt. Eng. 52, 061306 (2013).
[Crossref]

J. N. Vizgaitis, “Dual spectral-band optical lens imager,” U.S. patent9,091,840 (28July2015).

Wang, H.

K. Dong, L. Zhang, J. Wang, H. Wang, Q. Sun, and Z. Lu, “Design of the infrared dual-band athermalized optical system based on HDE,” Proc. SPIE 7383, 73831B (2009).
[Crossref]

Wang, J.

Wang, T.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13, 035711 (2011).
[Crossref]

Wang, W.

W. Wang, Contemporary Optical System Design (National Defense Industry, 2016).

Wenfeng, M.

M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
[Crossref]

Williams, D. J. L.

Y. Zhao, D. J. L. Williams, and P. McCarthy, “Chromatic correction for a VIS-SWIR zoom lens using optical glasses,” Proc. SPIE 9580, 95800E (2015).
[Crossref]

Wood, A.

C. Bigwood and A. Wood, “Two-element lenses for military applications,” Opt. Eng. 50, 121705 (2011).
[Crossref]

A. Wood, M. L. Lee, and S. Cassette, “Infrared hybrid optics with high broadband efficiency,” Proc. SPIE 5874, 58740G (2005).
[Crossref]

Xin, Z.

M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
[Crossref]

Xue, C.

Yang, H.

Yang, L.

Yue, J.

Zhang, B.

B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
[Crossref]

M. Piao, Q. Cui, and B. Zhang, “Achromatic negative index lens with diffractive optics,” J. Opt. 17, 025608 (2015).
[Crossref]

Zhang, H.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13, 035711 (2011).
[Crossref]

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13, 035711 (2011).
[Crossref]

H. Zhang, H. Liu, Z. Lu, and H. Zhang, “Modified phase function model for kinoform lenses,” Appl. Opt. 47, 4055–4060 (2008).
[Crossref]

H. Liu, Z. Lu, J. Yue, and H. Zhang, “The characteristics of compound diffractive telescope,” Opt. Express 16, 16195–16201 (2008).
[Crossref]

H. Zhang, H. Liu, Z. Lu, and H. Zhang, “Modified phase function model for kinoform lenses,” Appl. Opt. 47, 4055–4060 (2008).
[Crossref]

Zhang, L.

K. Dong, L. Zhang, J. Wang, H. Wang, Q. Sun, and Z. Lu, “Design of the infrared dual-band athermalized optical system based on HDE,” Proc. SPIE 7383, 73831B (2009).
[Crossref]

M. Erdtmann, L. Zhang, and G. Jin, “Uncooled dual-band MWIR/LWIR optical readout imager,” Proc. SPIE 6940, 694012 (2008).
[Crossref]

Zhang, R.

Zhao, L.

Zhao, Y.

Y. Zhao, D. J. L. Williams, and P. McCarthy, “Chromatic correction for a VIS-SWIR zoom lens using optical glasses,” Proc. SPIE 9580, 95800E (2015).
[Crossref]

Zhou, G.

Zou, Y.

Acta Opt. Sin. (1)

M. Wenfeng, Z. Xin, Q. Hemeng, Q. Hemeng, Z. Jizhen, and W. Lingjie, “Broad dual-band Kinoform infrared double-layer diffractive optical element,” Acta Opt. Sin. 34, 1022002 (2014).
[Crossref]

Acta Photon. Sin. (1)

X. Li, J. Liu, and Y. Chen, “Design of dual-band, high zoom ratio and continuous co-focal optical system,” Acta Photon. Sin. 45, 1022003 (2016).

Appl. Opt. (12)

D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
[Crossref]

Y. Tamagawa and T. Tajime, “Dual-band optical systems with a projective athermal chart: design,” Appl. Opt. 36, 297–301 (1997).
[Crossref]

M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 2452–2461 (1995).
[Crossref]

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).
[Crossref]

C. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34, 2469–2475 (1995).
[Crossref]

H. Zhang, H. Liu, Z. Lu, and H. Zhang, “Modified phase function model for kinoform lenses,” Appl. Opt. 47, 4055–4060 (2008).
[Crossref]

H. Yang, C. Xue, C. Li, and J. Wang, “Optimal design of multilayer diffractive optical elements with effective area method,” Appl. Opt. 55, 1675–1682 (2016).
[Crossref]

S. Mao, Q. Cui, M. Piao, and L. Zhao, “High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle,” Appl. Opt. 55, 3549–3554 (2016).
[Crossref]

H. Yang, C. Xue, C. Li, J. Wang, and R. Zhang, “Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements,” Appl. Opt. 55, 7126–7133 (2016).
[Crossref]

L. Yang, C. Liu, and S. Li, “Optimal design of depth-scaling error for multilayer diffractive optical elements with oblique incidence,” Appl. Opt. 56, 4532–4536 (2017).
[Crossref]

A. Mikš and J. Novák, “Method of first-order analysis of a three-element two-conjugate zoom lens,” Appl. Opt. 56, 5301–5306 (2017).
[Crossref]

G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design of plastic diffractive-refractive compact zoom lenses for visible-near-IR spectrum,” Appl. Opt. 52, 5843–5850 (2013).
[Crossref]

J. Eur. Opt. Soc. (1)

R. Bittner, “Tolerancing of single point diamond turned diffractive optical elements and optical surfaces,” J. Eur. Opt. Soc. 2, 07028 (2007).
[Crossref]

J. Opt. (2)

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13, 035711 (2011).
[Crossref]

M. Piao, Q. Cui, and B. Zhang, “Achromatic negative index lens with diffractive optics,” J. Opt. 17, 025608 (2015).
[Crossref]

J. Opt. Technol. (1)

Opt. Commun. (1)

B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
[Crossref]

Opt. Eng. (4)

C. Bigwood and A. Wood, “Two-element lenses for military applications,” Opt. Eng. 50, 121705 (2011).
[Crossref]

J. N. Vizgaitis and A. Hastings, “Dual band infrared picture-in-picture systems,” Opt. Eng. 52, 061306 (2013).
[Crossref]

I. A. Neil, “Optical design dependence on technology development,” Opt. Eng. 50, 121706 (2011).
[Crossref]

Y. Nevo, “Dual-band optics,” Opt. Eng. 52, 053002 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (8)

M. J. Riedl, “Diamond-turned diffractive optical elements for the infrared: suggestion for specification standardization and manufacturing remarks,” Proc. SPIE 2540, 257–269 (1995).
[Crossref]

Y. Guimond and Y. Bellec, “A new moldable infrared glass for thermal imaging and low cost sensing,” Proc. SPIE 6542, 654225 (2007).
[Crossref]

K. Dong, L. Zhang, J. Wang, H. Wang, Q. Sun, and Z. Lu, “Design of the infrared dual-band athermalized optical system based on HDE,” Proc. SPIE 7383, 73831B (2009).
[Crossref]

D. Reshidko, P. Reshidko, and R. Carmeli, “Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband,” Proc. SPIE 9580, 95800C (2015).
[Crossref]

Y. Zhao, D. J. L. Williams, and P. McCarthy, “Chromatic correction for a VIS-SWIR zoom lens using optical glasses,” Proc. SPIE 9580, 95800E (2015).
[Crossref]

M. Erdtmann, L. Zhang, and G. Jin, “Uncooled dual-band MWIR/LWIR optical readout imager,” Proc. SPIE 6940, 694012 (2008).
[Crossref]

A. Wood, M. L. Lee, and S. Cassette, “Infrared hybrid optics with high broadband efficiency,” Proc. SPIE 5874, 58740G (2005).
[Crossref]

Y. G. Soskind, “Diffractive optics technologies in infrared systems,” Proc. SPIE 9451, 94511T (2015).
[Crossref]

Other (8)

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), pp. 5–7.

“RTD611WB,” http://www.iraytek.com/uploadfile/2016/1111/20161111112027304.pdf .

J. N. Vizgaitis, “Dual spectral-band optical lens imager,” U.S. patent9,091,840 (28July2015).

“Infrared chalcogenide glasses,” http://www.us.schott.com/advanced_optics/english/products/optical-materials/ir-materials/infrared-chalcogenide-glasses/index.html .

D. C. O’shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE, 2004).

W. Wang, Contemporary Optical System Design (National Defense Industry, 2016).

Zemax Development Corporation, “OpticStudio user manual” (2016).

M. J. Riedl, Optical Design Fundamentals for Infrared Systems, 2nd ed. (SPIE, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Flow diagram of the optimal substrate materials selection.
Fig. 2.
Fig. 2. PIDE for different combinations in MWIR/LWIR dual-band versus incident angle.
Fig. 3.
Fig. 3. Relationship between comprehensive PIDE and PIDE of each wave band.
Fig. 4.
Fig. 4. Initial data. (a) Short focal length. (b) Middle focal length. (c) Long focal length.
Fig. 5.
Fig. 5. Different focal lengths for the final optimization results. (a) EFL=50mm. (b) EFL=90mm. (c) EFL=150mm.
Fig. 6.
Fig. 6. MTF for all configurations. (a) Short focal length in MWIR. (b) Short focal length in LWIR. (c) Middle focal length in MWIR. (d) Middle focal length in LWIR. (e) Long focal length in MWIR. (f) Long focal length in LWIR.
Fig. 7.
Fig. 7. Distortion for all configurations. (a) Short focal length in MWIR. (b) Short focal length in LWIR. (c) Middle focal length in MWIR. (d) Middle focal length in LWIR. (e) Long focal length in MWIR. (f) Long focal length in LWIR.
Fig. 8.
Fig. 8. Zoom cam curve for dual-band infrared zoom lens.

Tables (8)

Tables Icon

Table 1. Design Specifications of Dual-Band Infrared Zoom Lens

Tables Icon

Table 2. Comprehensive PIDE Difference for Different Substrate Material Combinations

Tables Icon

Table 3. Abbe Numbers and Refractive Indices of Available Materials in MWIR and LWIR

Tables Icon

Table 4. Lens Data of Dual-Band Infrared Zoom Lens with MLDOE

Tables Icon

Table 5. Detail Data of Even Asphere

Tables Icon

Table 6. Distance between the Lens Groups

Tables Icon

Table 7. Incident Angles of MLDOE

Tables Icon

Table 8. Minimum MTF Values of Dual-Band Infrared Zoom Lens in MWIR and LWIR

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ηm(λ,θ)=sinc2[mϕ(λ,θ)],
ϕθ(λ,θ)=H1λ[n1(λ)cosθ1n12(λ)sin2θ]+H2λ[n22(λ)n12(λ)sin2θ1n12(λ)sin2θ],
{H1[n1(λ1)cosθ1n12(λ1)sin2θ]+H2[n22(λ1)n12(λ1)sin2θ1n12(λ1)sin2θ]=mλ1H1[n1(λ2)cosθ1n12(λ2)sin2θ]+H2[n22(λ2)n12(λ2)sin2θ1n12(λ2)sin2θ]=mλ2,
{H1θ=mλ2A(λ1)mλ1A(λ2)B(λ2)A(λ1)B(λ1)A(λ2)H2θ=mλ1B(λ2)mλ2A(λ1)B(λ2)A(λ1)B(λ1)A(λ2),
{A(λ)=n22(λ)n12(λ)sin2θ1n12(λ)sin2θB(λ)=n1(λ)cosθ1n12(λ)sin2θ.
{H1=λ2[(n2(λ1)nm(λ1))]λ1[(n2(λ2)nm(λ2))][(n1(λ2)nm(λ2))][(n2(λ1)nm(λ1))][(n1(λ1)nm(λ1))][(n2(λ2)nm(λ2))]H2=λ1[(n1(λ2)nm(λ2))]λ2[(n1(λ1)nm(λ1))][(n1(λ2)nm(λ2))][(n2(λ1)nm(λ1))][(n1(λ1)nm(λ1))][(n2(λ2)nm(λ2))].
{η¯mB1(λ,θ)=1λ1maxλ1minλ1minλ1maxsinc2[mϕ(λ,θ)]dλη¯mB2(λ,θ)=1λ2maxλ2minλ2minλ2maxsinc2[mϕ(λ,θ)]dλ,
η¯mCompre(λ,θ)=W1·η¯mB1(λ,θ)+W2·η¯mB2(λ,θ),
OTFa(fx,fy)=η¯m·OTFT(fx,fy),
Δη¯mCompre(λ)=η¯mCompre_0(λ)η¯mCompre_θ(λ),
{η¯mCompre_0(λ)=W1λ1maxλ1minλ1minλ1maxsinc2[mϕ0(λ)]dλ+W2λ2maxλ2minλ2minλ2maxsinc2[mϕ0(λ)]dλη¯mCompre_θ(λ)=W1λ1maxλ1minλ1minλ1maxsinc2[mϕθ(λ)]dλ+W2λ2maxλ2minλ2minλ2maxsinc2[mϕθ(λ)]dλ,
{ϕ(λ)=1λi=12Hi[ni(λ)1]ϕθ(λ)=1λi=12Hiθ[ni(λ)1].
z=cr21+1(1+k)c2r2+αir2i,
ϕ=Mi=1NAiρ2i,
MF2=Wi(ViTi)2Wi,