Abstract

In this study, merging two photonic crystal-based structures, a new design for an all-optical 2-to-4 decoder has been proposed. The switching operation is based on the Kerr effect and refractive index modification. The structure consists of one nonlinear ring resonator and three nonlinear cavities that have been modified for entering the slow-light regime in order to enhance coupling through waveguides. The maximum group index of 94 has been obtained for the proposed slow-light waveguides. With this approach, the maximum and minimum normalized output powers for logic 0 and 1 are 4% and 82%, respectively. The data transfer rate of the decoder is 220 GHz, and the size of the structure is 24×9.5μm2. The maximum insertion loss and cross talk are 7.45dB and 16.38dB, respectively. Considering the above characteristics, the proposed decoder can be qualified as a part of optical integrated circuits.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators

Tina Daghooghi, Mohammad Soroosh, and Karim Ansari-Asl
Appl. Opt. 57(9) 2250-2257 (2018)

Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators

Kathleen McGarvey-Lechable and Pablo Bianucci
Opt. Express 22(21) 26032-26041 (2014)

Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach–Zehnder interferometer

Sara Bakhshi, Mohammad Kazem Moravvej-Farshi, and Majid Ebnali-Heidari
Appl. Opt. 51(14) 2687-2692 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription