Abstract

To correct wavefront aberrations, commonly employing proportional-integral control in adaptive optics (AO) systems, the control process depends strictly on the response matrix of the deformable mirror. The alignment error between the Hartmann–Shack wavefront sensor and the deformable mirror is caused by various factors in AO systems. In the conventional control method, the response matrix can be recalibrated to reduce the impact of alignment error, but the impact cannot be eliminated. This paper proposes a control method based on a deep learning control model (DLCM) to compensate for wavefront aberrations, eliminating the dependence on the deformable mirror response matrix. Based on the wavefront slope data, the cost functions of the model network and the actor network are defined, and the gradient optimization algorithm improves the efficiency of the network training. The model network guarantees the stability and convergence speed, while the actor network improves the control accuracy, realizing an online identification and self-adaptive control of the system. A parameter-sharing mechanism is adopted between the model network and the actor network to control the system gain. Simulation results show that the DLCM has good adaptability and stability. Through self-learning, it improves the convergence accuracy and iterations, as well as the adjustment tolerance of the system.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive phase aberration correction based on imperialist competitive algorithm

R. Yazdani, M. Hajimahmoodzadeh, and H. R. Fallah
Appl. Opt. 53(1) 132-140 (2014)

Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters

Mikhail A. Vorontsov and Gary W. Carhart
J. Opt. Soc. Am. A 23(10) 2613-2622 (2006)

Fast correction approach for wavefront sensorless adaptive optics based on a linear phase diversity technique

Dan Yue, Haitao Nie, Ye Li, and Changsheng Ying
Appl. Opt. 57(7) 1650-1656 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription