Abstract

In this paper, it is shown that a suitable choice of the geometrical parameters of a silicon-wire waveguide microracetrack resonator structure can lead to a substantial improvement in the control of coupling coefficients and, hence, the design of ultracompact devices for high-performance channel add-drop filters and all-optical switching applications. On the one hand, some simple theoretical arguments and simulation results indicate that the reduction of the silicon-wire rectangular waveguide cross-section area (width×height) is possible, from standard (450nm×220nm) to (380nm×200nm) on both the bus and the resonator waveguides; this action, apart from still guaranteeing a quasi-TE single-mode operation, would provide an effective improvement into scale-of-integration by a 1.30 factor per device volume. On the other hand, it will be shown by a semianalytical method (analytical calculation + numerical simulation) that achieving the waveguide-racetrack optimal coupling condition for a particular application can be reduced to a prime calculation of the main resonator geometrical parameters (bend radius, straight length, air gap and overall coupling length). In particular, the design of high-performance ultracompact waveguide-racetrack resonator structures, with pre-established Q factor (Q2000), free spectral range (FSR15nm), full width at half-maximum (FWHM5nm), finesse (F40) or extinction ratio signals (ER20dB) can be systematically obtained with this procedure.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Q silicon-on-insulator optical rib waveguide racetrack resonators

Isa Kiyat, Atilla Aydinli, and Nadir Dagli
Opt. Express 13(6) 1900-1905 (2005)

Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement

Robi Boeck, Nicolas A. F. Jaeger, Nicolas Rouger, and Lukas Chrostowski
Opt. Express 18(24) 25151-25157 (2010)

Optical attenuation in ion-implanted silicon waveguide racetrack resonators

J. K. Doylend, P. E. Jessop, and A. P. Knights
Opt. Express 19(16) 14913-14918 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription