Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Computational image speckle suppression using block matching and machine learning

Not Accessible

Your library or personal account may give you access

Abstract

We develop an image despeckling method that combines nonlocal self-similarity filters with machine learning, which makes use of convolutional neural network (CNN) denoisers. It consists of three major steps: block matching, CNN despeckling, and group shrinkage. Through the use of block matching, we can take advantage of the similarity across image patches as a regularizer to augment the performance of data-driven denoising using a pre-trained network. The outputs from the CNN denoiser and the group coordinates from block matching are further used to form 3D groups of similar patches, which are then filtered through a wavelet-domain shrinkage. The experimental results show that the proposed method achieves noticeable improvement compared with state-of-the-art speckle suppression techniques in both visual inspection and objective assessments.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Block matching low-rank for ghost imaging

Heyan Huang, Cheng Zhou, Wenlin Gong, and Lijun Song
Opt. Express 27(26) 38624-38634 (2019)

Double-path parallel convolutional neural network for removing speckle noise in different types of OCT images

Zhengjie Shen, Manhui Xi, Chen Tang, Min Xu, and Zhenkun Lei
Appl. Opt. 60(15) 4345-4355 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.