Abstract

We develop an image despeckling method that combines nonlocal self-similarity filters with machine learning, which makes use of convolutional neural network (CNN) denoisers. It consists of three major steps: block matching, CNN despeckling, and group shrinkage. Through the use of block matching, we can take advantage of the similarity across image patches as a regularizer to augment the performance of data-driven denoising using a pre-trained network. The outputs from the CNN denoiser and the group coordinates from block matching are further used to form 3D groups of similar patches, which are then filtered through a wavelet-domain shrinkage. The experimental results show that the proposed method achieves noticeable improvement compared with state-of-the-art speckle suppression techniques in both visual inspection and objective assessments.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-dose CT via convolutional neural network

Hu Chen, Yi Zhang, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang
Biomed. Opt. Express 8(2) 679-694 (2017)

On the use of deep learning for computational imaging

George Barbastathis, Aydogan Ozcan, and Guohai Situ
Optica 6(8) 921-943 (2019)

Retinal optical coherence tomography image enhancement via deep learning

Kerry J. Halupka, Bhavna J. Antony, Matthew H. Lee, Katie A. Lucy, Ravneet S. Rai, Hiroshi Ishikawa, Gadi Wollstein, Joel S. Schuman, and Rahil Garnavi
Biomed. Opt. Express 9(12) 6205-6221 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription