Abstract

Based on the effective perspective images’ segmentation and mosaicking (EPISM) printing method, the influence of the holographic element (hogel) size on the reconstructed quality is analyzed to improve the reconstructed quality of holographic stereogram. The flipping effect and diffraction effect in the spatial domain are also discussed, and the optical transfer function of the holographic stereogram is used in the spectrum domain to evaluate the reconstructed quality. Theoretical analysis and optical experimental results show that the hogel size plays an important role on the flipping effect as well as the clarity of the reconstrued 3D perspective images of the EPISM-based holographic stereogram, and the flipping effect can be improved significantly with optimized hogel size.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking

Jian Su, Quan Yuan, Yingqing Huang, Xiaoyu Jiang, and Xingpeng Yan
Opt. Express 25(19) 23523-23544 (2017)

Improvement of printing efficiency in holographic stereogram printing with the combination of a field lens and holographic diffuser

Jian Su, Xingpeng Yan, Yingqing Huang, Xiaoyu Jiang, Yibei Chen, and Teng Zhang
Appl. Opt. 57(25) 7159-7166 (2018)

Accurate phase-added stereogram to improve the coherent stereogram

Hoonjong Kang, Takeshi Yamaguchi, and Hiroshi Yoshikawa
Appl. Opt. 47(19) D44-D54 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Goncharsky, A. Goncharsky, and S. Durlevich, “High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology,” Opt. Eng. 56, 063105 (2017).
    [Crossref]
  2. K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
    [Crossref]
  3. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Layered holographic stereogram based on inverse Fresnel diffraction,” Appl. Opt. 55, A154–A159 (2016).
    [Crossref]
  4. Y. Takaki and K. Taira, “Speckle regularization and miniaturization of computer-generated holographic stereograms,” Opt. Express 24, 6328–6340 (2016).
    [Crossref]
  5. S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
    [Crossref]
  6. H. Yu, K. R. Lee, J. Park, and Y. K. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11, 186–192 (2017).
    [Crossref]
  7. Z. Zhang, S. Chen, H. Zheng, Z. Zeng, H. Gao, Y. Yu, and A. K. Asundi, “Full-color holographic 3D display using slice-based fractional Fourier transform combined with free-space Fresnel diffraction: erratum,” Appl. Opt. 56, 5668–5675 (2017).
    [Crossref]
  8. P. A. Blanche, C. Bigler, J. W. Ka, and N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 57, 061608 (2018).
    [Crossref]
  9. X. Li, J. Liu, Y. Pan, and Y. Wang, “Improved polygon-based method for subwavelength pixel pitch computer generated holograms,” Opt. Commun. 390, 22–25 (2017).
    [Crossref]
  10. Y. Takaki and M. Yokouchi, “Accommodation measurements of horizontally scanning holographic display,” Opt. Express 20, 3918–3931 (2012).
    [Crossref]
  11. D. J. Debitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt. 8, 1740–1741 (1969).
    [Crossref]
  12. M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt. 9, 471–476 (1970).
    [Crossref]
  13. H. I. Bjelkhagen, “Ultrarealistic imaging: the future of display holography,” Opt. Eng. 53, 112310 (2014).
    [Crossref]
  14. M. Yamaguchi, “Full-parallax holographic light-field 3-D displays and interactive 3-D touch,” Proc. IEEE 105, 947–959 (2017).
    [Crossref]
  15. M. W. Halle, “The generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
    [Crossref]
  16. M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31, 217–222 (1992).
    [Crossref]
  17. M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama, “High-quality recording of a full-parallax holographic stereogram with a digital diffuser,” Opt. Lett. 19, 135–137 (1994).
    [Crossref]
  18. D. Brotherton-Ratcliffe, “Large format digital colour holograms produced using RGB pulsed laser technology,” in 7th International Symposium on Display Holography, H. I. Bjelkhagen, ed. (River Valley, 2006), pp. 200–208.
  19. K. Hong, S. G. Park, J. Yeom, J. Kim, N. Chen, K. Pyun, C. Choi, S. Kim, J. An, and H. S. Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
    [Crossref]
  20. M. Yamaguchi, H. Higuchi, and R. Kojima, “Evaluation of light-ray reproducibility in full-parallax holographic stereogram,” in Digital Holography and Three-Dimensional Imaging (OSA, 2007), p. DTuA4.
  21. M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A. 33, 2348–2364 (2016).
    [Crossref]
  22. J. Park, H. Kang, E. Stoykova, Y. Kim, S. Hong, Y. Choi, Y. Kim, S. Kwon, and S. Lee, “Numerical reconstruction of a full parallax holographic stereogram with radial distortion,” Opt. Express 22, 20776–20788 (2014).
    [Crossref]
  23. B. Lee, J.-H. Kim, K. Moon, I.-J. Kim, and J. Kim, “Holographic stereogram printing under the non-vibration environment,” Proc. SPIE 9117, 911704 (2014).
    [Crossref]
  24. A. V. Morozov, A. N. Putilin, S. S. Kopenkin, Y. P. Borodin, V. V. Druzhin, S. E. Dubynin, and G. B. Dubinin, “3D holographic printer: fast printing approach,” Opt. Express 22, 2193–2206 (2014).
    [Crossref]
  25. T. Utsugi and M. Yamaguchi, “Reduction of the recorded speckle noise in holographic 3D printer,” Opt. Express 21, 662–674 (2013).
    [Crossref]
  26. F. Yang, Y. Murakami, and M. Yamaguchi, “Digital color management in full-color holographic three-dimensional printer,” Appl. Opt. 51, 4343–4352 (2012).
    [Crossref]
  27. J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
    [Crossref]
  28. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722–2729 (1976).
    [Crossref]
  29. C. J. Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: significance for image scanning microscopy,” Opt. Express 24, 27280–27287 (2016).
    [Crossref]
  30. J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
    [Crossref]
  31. J. W. Goodman and E. Huggins, “Introduction to Fourier optics, second edition,” Opt. Eng. 28, 595–599 (1996).

2018 (2)

P. A. Blanche, C. Bigler, J. W. Ka, and N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 57, 061608 (2018).
[Crossref]

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
[Crossref]

2017 (6)

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
[Crossref]

X. Li, J. Liu, Y. Pan, and Y. Wang, “Improved polygon-based method for subwavelength pixel pitch computer generated holograms,” Opt. Commun. 390, 22–25 (2017).
[Crossref]

A. Goncharsky, A. Goncharsky, and S. Durlevich, “High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology,” Opt. Eng. 56, 063105 (2017).
[Crossref]

H. Yu, K. R. Lee, J. Park, and Y. K. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11, 186–192 (2017).
[Crossref]

Z. Zhang, S. Chen, H. Zheng, Z. Zeng, H. Gao, Y. Yu, and A. K. Asundi, “Full-color holographic 3D display using slice-based fractional Fourier transform combined with free-space Fresnel diffraction: erratum,” Appl. Opt. 56, 5668–5675 (2017).
[Crossref]

M. Yamaguchi, “Full-parallax holographic light-field 3-D displays and interactive 3-D touch,” Proc. IEEE 105, 947–959 (2017).
[Crossref]

2016 (5)

2015 (1)

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
[Crossref]

2014 (4)

2013 (2)

2012 (2)

1996 (1)

J. W. Goodman and E. Huggins, “Introduction to Fourier optics, second edition,” Opt. Eng. 28, 595–599 (1996).

1994 (1)

1992 (1)

1991 (1)

M. W. Halle, “The generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

1976 (1)

1970 (1)

1969 (1)

An, J.

Asundi, A. K.

Berry, D. H.

Bigler, C.

P. A. Blanche, C. Bigler, J. W. Ka, and N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 57, 061608 (2018).
[Crossref]

Bjelkhagen, H. I.

H. I. Bjelkhagen, “Ultrarealistic imaging: the future of display holography,” Opt. Eng. 53, 112310 (2014).
[Crossref]

Blanche, P. A.

P. A. Blanche, C. Bigler, J. W. Ka, and N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 57, 061608 (2018).
[Crossref]

Borodin, Y. P.

Brotherton-Ratcliffe, D.

D. Brotherton-Ratcliffe, “Large format digital colour holograms produced using RGB pulsed laser technology,” in 7th International Symposium on Display Holography, H. I. Bjelkhagen, ed. (River Valley, 2006), pp. 200–208.

Cao, L.

Castello, M.

Chen, N.

Chen, R.

Chen, S.

Chen, X.

Chen, Y.

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
[Crossref]

Choi, C.

Choi, Y.

Debitetto, D. J.

Diaspro, A.

Dong, X. B.

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
[Crossref]

Druzhin, V. V.

Dubinin, G. B.

Dubynin, S. E.

Durlevich, S.

A. Goncharsky, A. Goncharsky, and S. Durlevich, “High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology,” Opt. Eng. 56, 063105 (2017).
[Crossref]

Endoh, H.

Gao, H.

Goncharsky, A.

A. Goncharsky, A. Goncharsky, and S. Durlevich, “High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology,” Opt. Eng. 56, 063105 (2017).
[Crossref]

A. Goncharsky, A. Goncharsky, and S. Durlevich, “High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology,” Opt. Eng. 56, 063105 (2017).
[Crossref]

Goodman, J. W.

J. W. Goodman and E. Huggins, “Introduction to Fourier optics, second edition,” Opt. Eng. 28, 595–599 (1996).

Halle, M. W.

M. W. Halle, “The generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

Heintzmann, R.

Higuchi, H.

M. Yamaguchi, H. Higuchi, and R. Kojima, “Evaluation of light-ray reproducibility in full-parallax holographic stereogram,” in Digital Holography and Three-Dimensional Imaging (OSA, 2007), p. DTuA4.

Honda, T.

Hong, K.

Hong, S.

Hsieh, P. Y.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Huang, Y.

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
[Crossref]

Huang, Y. P.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Huggins, E.

J. W. Goodman and E. Huggins, “Introduction to Fourier optics, second edition,” Opt. Eng. 28, 595–599 (1996).

Ichihashi, Y.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Jiang, X.

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
[Crossref]

Jin, G.

Ka, J. W.

P. A. Blanche, C. Bigler, J. W. Ka, and N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 57, 061608 (2018).
[Crossref]

Kang, H.

Kim, E. S.

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
[Crossref]

Kim, I.-J.

B. Lee, J.-H. Kim, K. Moon, I.-J. Kim, and J. Kim, “Holographic stereogram printing under the non-vibration environment,” Proc. SPIE 9117, 911704 (2014).
[Crossref]

Kim, J.

Kim, J.-H.

B. Lee, J.-H. Kim, K. Moon, I.-J. Kim, and J. Kim, “Holographic stereogram printing under the non-vibration environment,” Proc. SPIE 9117, 911704 (2014).
[Crossref]

Kim, S.

Kim, S. C.

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
[Crossref]

Kim, Y.

King, M. C.

Kojima, R.

M. Yamaguchi, H. Higuchi, and R. Kojima, “Evaluation of light-ray reproducibility in full-parallax holographic stereogram,” in Digital Holography and Three-Dimensional Imaging (OSA, 2007), p. DTuA4.

Kopenkin, S. S.

Kwon, S.

Lee, B.

B. Lee, J.-H. Kim, K. Moon, I.-J. Kim, and J. Kim, “Holographic stereogram printing under the non-vibration environment,” Proc. SPIE 9117, 911704 (2014).
[Crossref]

Lee, H. S.

Lee, K. R.

H. Yu, K. R. Lee, J. Park, and Y. K. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11, 186–192 (2017).
[Crossref]

Lee, S.

Li, X.

X. Li, J. Liu, Y. Pan, and Y. Wang, “Improved polygon-based method for subwavelength pixel pitch computer generated holograms,” Opt. Commun. 390, 22–25 (2017).
[Crossref]

Liu, J.

X. Li, J. Liu, Y. Pan, and Y. Wang, “Improved polygon-based method for subwavelength pixel pitch computer generated holograms,” Opt. Commun. 390, 22–25 (2017).
[Crossref]

Moon, K.

B. Lee, J.-H. Kim, K. Moon, I.-J. Kim, and J. Kim, “Holographic stereogram printing under the non-vibration environment,” Proc. SPIE 9117, 911704 (2014).
[Crossref]

Morozov, A. V.

Murakami, Y.

Noll, A. M.

Ohyama, N.

Oi, R.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Okui, M.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Pan, Y.

X. Li, J. Liu, Y. Pan, and Y. Wang, “Improved polygon-based method for subwavelength pixel pitch computer generated holograms,” Opt. Commun. 390, 22–25 (2017).
[Crossref]

Park, J.

H. Yu, K. R. Lee, J. Park, and Y. K. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11, 186–192 (2017).
[Crossref]

J. Park, H. Kang, E. Stoykova, Y. Kim, S. Hong, Y. Choi, Y. Kim, S. Kwon, and S. Lee, “Numerical reconstruction of a full parallax holographic stereogram with radial distortion,” Opt. Express 22, 20776–20788 (2014).
[Crossref]

Park, S. G.

Park, Y. K.

H. Yu, K. R. Lee, J. Park, and Y. K. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11, 186–192 (2017).
[Crossref]

Peyghambarian, N.

P. A. Blanche, C. Bigler, J. W. Ka, and N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 57, 061608 (2018).
[Crossref]

Putilin, A. N.

Pyun, K.

Roth, S.

Sasaki, H.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Senoh, T.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Sheppard, C. J.

Stoykova, E.

Su, J.

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
[Crossref]

Taira, K.

Takaki, Y.

Utsugi, T.

Vicidomini, G.

Wakunami, K.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Wang, Y.

X. Li, J. Liu, Y. Pan, and Y. Wang, “Improved polygon-based method for subwavelength pixel pitch computer generated holograms,” Opt. Commun. 390, 22–25 (2017).
[Crossref]

Yamaguchi, M.

M. Yamaguchi, “Full-parallax holographic light-field 3-D displays and interactive 3-D touch,” Proc. IEEE 105, 947–959 (2017).
[Crossref]

M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A. 33, 2348–2364 (2016).
[Crossref]

T. Utsugi and M. Yamaguchi, “Reduction of the recorded speckle noise in holographic 3D printer,” Opt. Express 21, 662–674 (2013).
[Crossref]

F. Yang, Y. Murakami, and M. Yamaguchi, “Digital color management in full-color holographic three-dimensional printer,” Appl. Opt. 51, 4343–4352 (2012).
[Crossref]

M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama, “High-quality recording of a full-parallax holographic stereogram with a digital diffuser,” Opt. Lett. 19, 135–137 (1994).
[Crossref]

M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31, 217–222 (1992).
[Crossref]

M. Yamaguchi, H. Higuchi, and R. Kojima, “Evaluation of light-ray reproducibility in full-parallax holographic stereogram,” in Digital Holography and Three-Dimensional Imaging (OSA, 2007), p. DTuA4.

Yamamoto, K.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Yan, X.

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
[Crossref]

Yang, F.

Yatagai, T.

Yeom, J.

Yokouchi, M.

Yu, H.

H. Yu, K. R. Lee, J. Park, and Y. K. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11, 186–192 (2017).
[Crossref]

Yu, Y.

Yuan, Q.

Zeng, Z.

Zhang, H.

Zhang, T.

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
[Crossref]

Zhang, Z.

Zhao, Y.

Zheng, H.

Appl. Opt. (7)

J. Opt. Soc. Am. A. (1)

M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A. 33, 2348–2364 (2016).
[Crossref]

Nat. Commun. (1)

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref]

Nat. Photonics (1)

H. Yu, K. R. Lee, J. Park, and Y. K. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11, 186–192 (2017).
[Crossref]

Opt. Commun. (1)

X. Li, J. Liu, Y. Pan, and Y. Wang, “Improved polygon-based method for subwavelength pixel pitch computer generated holograms,” Opt. Commun. 390, 22–25 (2017).
[Crossref]

Opt. Eng. (4)

P. A. Blanche, C. Bigler, J. W. Ka, and N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 57, 061608 (2018).
[Crossref]

A. Goncharsky, A. Goncharsky, and S. Durlevich, “High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology,” Opt. Eng. 56, 063105 (2017).
[Crossref]

H. I. Bjelkhagen, “Ultrarealistic imaging: the future of display holography,” Opt. Eng. 53, 112310 (2014).
[Crossref]

J. W. Goodman and E. Huggins, “Introduction to Fourier optics, second edition,” Opt. Eng. 28, 595–599 (1996).

Opt. Express (8)

J. Park, H. Kang, E. Stoykova, Y. Kim, S. Hong, Y. Choi, Y. Kim, S. Kwon, and S. Lee, “Numerical reconstruction of a full parallax holographic stereogram with radial distortion,” Opt. Express 22, 20776–20788 (2014).
[Crossref]

A. V. Morozov, A. N. Putilin, S. S. Kopenkin, Y. P. Borodin, V. V. Druzhin, S. E. Dubynin, and G. B. Dubinin, “3D holographic printer: fast printing approach,” Opt. Express 22, 2193–2206 (2014).
[Crossref]

T. Utsugi and M. Yamaguchi, “Reduction of the recorded speckle noise in holographic 3D printer,” Opt. Express 21, 662–674 (2013).
[Crossref]

C. J. Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: significance for image scanning microscopy,” Opt. Express 24, 27280–27287 (2016).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25, 23523–23544 (2017).
[Crossref]

K. Hong, S. G. Park, J. Yeom, J. Kim, N. Chen, K. Pyun, C. Choi, S. Kim, J. An, and H. S. Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
[Crossref]

Y. Takaki and K. Taira, “Speckle regularization and miniaturization of computer-generated holographic stereograms,” Opt. Express 24, 6328–6340 (2016).
[Crossref]

Y. Takaki and M. Yokouchi, “Accommodation measurements of horizontally scanning holographic display,” Opt. Express 20, 3918–3931 (2012).
[Crossref]

Opt. Lett. (1)

Proc. IEEE (1)

M. Yamaguchi, “Full-parallax holographic light-field 3-D displays and interactive 3-D touch,” Proc. IEEE 105, 947–959 (2017).
[Crossref]

Proc. SPIE (2)

M. W. Halle, “The generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

B. Lee, J.-H. Kim, K. Moon, I.-J. Kim, and J. Kim, “Holographic stereogram printing under the non-vibration environment,” Proc. SPIE 9117, 911704 (2014).
[Crossref]

Sci. Rep. (2)

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8, 4488 (2018).
[Crossref]

S. C. Kim, X. B. Dong, and E. S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting,” Sci. Rep. 5, 14056 (2015).
[Crossref]

Other (2)

D. Brotherton-Ratcliffe, “Large format digital colour holograms produced using RGB pulsed laser technology,” in 7th International Symposium on Display Holography, H. I. Bjelkhagen, ed. (River Valley, 2006), pp. 200–208.

M. Yamaguchi, H. Higuchi, and R. Kojima, “Evaluation of light-ray reproducibility in full-parallax holographic stereogram,” in Digital Holography and Three-Dimensional Imaging (OSA, 2007), p. DTuA4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. General principle of EPISM method. (a) Acquisition of the effective perspective image segment, (b) acquisition of the synthetical effective perspective image from the segmentation and mosaicking of multiple effective perspective images’ segments.
Fig. 2.
Fig. 2. Flipping effect of the perspective image viewing from different hogels.
Fig. 3.
Fig. 3. Holographic element diffraction limit resolution.
Fig. 4.
Fig. 4. Optical setup of EPISM-based synthetic holographic stereogram printer system.
Fig. 5.
Fig. 5. Optical reconstruction 3D perspective images from different view angles with different hogel sizes. The hogel size is (a) 0.2 cm, (b) 0.5 cm, and (c) 1 cm.
Fig. 6.
Fig. 6. Value of Ξ with respect to the different exit pupil sizes S .
Fig. 7.
Fig. 7. Flipping effect for different hogel sizes of (a) 0.2 cm, (b) 0.5 cm, and (c) 1 cm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ω = Z d S / ( Z + Z d ) ,
ω β ,
β = 1.22 λ Z / α .
{ 0 < S 1.22 λ Z ( Z + Z d ) Z d a , when a S 0 < S 1.22 λ Z ( Z + Z d ) Z d , when a > S .
OTF ( f x , f y , z s ) = Λ ( λ z s f x S ) Λ ( λ z s f y S ) × sinc [ ( z 1 z s ) z 1 z s ( S z s f x ) ( 1 λ z s | f x | S ) ] × sinc [ ( z 1 z s ) z 1 z s ( S z s f y ) ( 1 λ z s | f y | S ) ] ,
Λ ( x ) = { 1 | x | | x | 1 0 other .
Ξ = z s min z s max 0 f x max 0 f y max OTF ( f x , f y , z s ) d z s d f x d f y .
δ d ( S , z D ) S + λ z D S .

Metrics